|
Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2008, Volume 14, Number 2, Pages 174–181
(Mi timm33)
|
|
|
|
Algebra and Topology
Minimal embeddings of topological spaces into the real line
M. A. Patrakeev
Abstract:
A theorem describing $\mathbb R$-minimal topological spaces is proved. These are spaces $(X,\tau)$ topologically embeddable into the real line $\mathbb R$ and not possessing this property under the replacement of $\tau$ by a weaker topology.
Received: 16.02.2008
Citation:
M. A. Patrakeev, “Minimal embeddings of topological spaces into the real line”, Trudy Inst. Mat. i Mekh. UrO RAN, 14, no. 2, 2008, 174–181; Proc. Steklov Inst. Math. (Suppl.), 263, suppl. 2 (2008), S172–S180
Linking options:
https://www.mathnet.ru/eng/timm33 https://www.mathnet.ru/eng/timm/v14/i2/p174
|
Statistics & downloads: |
Abstract page: | 337 | Full-text PDF : | 128 | References: | 65 |
|