Abstract:
We consider the class Pn of algebraic polynomials Pn(x,y) of two variables of degree n whose uniform norm on the unit circle Γ1 centered at the origin is at most 1: ‖Pn‖C(Γ1)⩽1. We study the extension of polynomials from the class Pn to the plane with the least uniform norm on the concentric circle Γr of radius r. We prove that the values θn(r) of the best extension of the class Pn satisfy the equalities θn(r)=rn for r>1 and θn(r)=rn−1 for 0<r<1.
Keywords:
polynomial of many variables, the best extension, uniform norm, harmonic polynomial.
Citation:
A. V. Parfenenkov, “The best extension of algebraic polynomials from the unit circle”, Trudy Inst. Mat. i Mekh. UrO RAN, 15, no. 1, 2009, 184–194; Proc. Steklov Inst. Math. (Suppl.), 265, suppl. 1 (2009), S194–S204
\Bibitem{Par09}
\by A.~V.~Parfenenkov
\paper The best extension of algebraic polynomials from the unit circle
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2009
\vol 15
\issue 1
\pages 184--194
\mathnet{http://mi.mathnet.ru/timm214}
\elib{https://elibrary.ru/item.asp?id=11929787}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2009
\vol 265
\issue , suppl. 1
\pages S194--S204
\crossref{https://doi.org/10.1134/S0081543809060157}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000268192700015}
Linking options:
https://www.mathnet.ru/eng/timm214
https://www.mathnet.ru/eng/timm/v15/i1/p184
This publication is cited in the following 2 articles:
V. V. Arestov, A. A. Seleznev, “Best $L^2$-Extension of Algebraic Polynomials from the Unit Euclidean Sphere to a Concentric Sphere”, Proc. Steklov Inst. Math. (Suppl.), 313, suppl. 1 (2021), S6–S13
N. A. Baraboshkina, “Priblizhenie garmonicheskikh funktsii algebraicheskimi mnogochlenami na okruzhnosti radiusa menshe edinitsy s nalichiem ogranichenii na edinichnoi okruzhnosti”, Tr. IMM UrO RAN, 19, no. 2, 2013, 71–78