Loading [MathJax]/jax/output/SVG/config.js
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2024, Volume 30, Number 3, Pages 86–98
DOI: https://doi.org/10.21538/0134-4889-2024-30-3-86-98
(Mi timm2106)
 

The value and optimal strategies in a positional differential game for a neutral-type system

M. I. Gomoyunovab, N. Yu. Lukoyanova

a N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Udmurt State University, Izhevsk
References:
Abstract: On a finite time interval, a differential game for the minimax–maximin of a given cost functional is considered. In this game, the motion of a conflict-controlled dynamical system is described by functional differential equations of neutral type in Hale's form. Under assumptions more general than those considered previously, a theorem on the existence of the value and saddle point of the game in classes of players' closed-loop control strategies with memory of the motion history is proved. The proof involves the technique of the corresponding path-dependent Hamilton–Jacobi equations with coinvariant derivatives and the theory of minimax (generalized) solutions of such equations. In order to construct optimal strategies, which constitute a saddle point of the game, a recent result on the existence and uniqueness of a suitable minimax solution and a special Lyapunov–Krasovskii functional are used.
Keywords: differential game, neutral-type equation, game value, optimal strategies, path-dependent Hamilton–Jacobi equation, coinvariant derivatives, minimax solution.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FEWS-2024-0009
This work was supported by the Ministry of Science and Higher Education of the Russian Federation within a state contract (project FEWS-2024-0009).
Received: 26.06.2024
Revised: 11.07.2024
Accepted: 15.07.2024
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2024, Volume 327, Issue 1, Pages S112–S123
DOI: https://doi.org/10.1134/S0081543824070083
Bibliographic databases:
Document Type: Article
UDC: 517.977
MSC: 49N70, 49L20, 34K40
Language: Russian
Citation: M. I. Gomoyunov, N. Yu. Lukoyanov, “The value and optimal strategies in a positional differential game for a neutral-type system”, Trudy Inst. Mat. i Mekh. UrO RAN, 30, no. 3, 2024, 86–98; Proc. Steklov Inst. Math. (Suppl.), 327, suppl. 1 (2024), S112–S123
Citation in format AMSBIB
\Bibitem{GomLuk24}
\by M.~I.~Gomoyunov, N.~Yu.~Lukoyanov
\paper The value and optimal strategies in a positional differential game for a neutral-type system
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2024
\vol 30
\issue 3
\pages 86--98
\mathnet{http://mi.mathnet.ru/timm2106}
\crossref{https://doi.org/10.21538/0134-4889-2024-30-3-86-98}
\elib{https://elibrary.ru/item.asp?id=69053408}
\edn{https://elibrary.ru/jznkdh}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2024
\vol 327
\issue , suppl. 1
\pages S112--S123
\crossref{https://doi.org/10.1134/S0081543824070083}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-105000079553}
Linking options:
  • https://www.mathnet.ru/eng/timm2106
  • https://www.mathnet.ru/eng/timm/v30/i3/p86
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:104
    Full-text PDF :2
    References:23
    First page:13
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025