Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2024, Volume 30, Number 2, Pages 277–299
DOI: https://doi.org/10.21538/0134-4889-2024-30-2-277-299
(Mi timm2098)
 

Continuous dependence of sets in a space of measures and a program minimax problem

A. G. Chentsovab, D. A. Serkovab

a N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Institute of Radio Engineering and Information Technologies, Ural Federal University, Ekaterinburg
References:
Abstract: For conflict-controlled dynamical systems satisfying the conditions of generalized uniqueness and uniform boundedness, the solvability of the minimax problem in the class of generalized controls is studied. The issues of consistency of such an extension are considered; i. e., the possibility of approximating generalized controls in the space of strategic measures by embeddings of ordinary controls is analyzed. For this purpose, the dependence of the set of measures on the general marginal distribution specified on one of the factors of the base space is studied. The continuity of this dependence in the Hausdorff metric defined by the metric corresponding to the $*$-weak topology in the space of measures is established. The density of embeddings of ordinary controls and control-noise pairs in sets of corresponding generalized controls in the $*$-weak topologies is also shown.
Keywords: generalized controls, strategic measures, minimax problem, $*$-weak convergence, Hausdorff metric.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-02-2024-1377
The work was performed as part of research conducted in the Ural Mathematical Center with the financial support of the Ministry of Science and Higher Education of the Russian Federation (Agreement number 075-02-2024-1377).
Received: 11.03.2024
Revised: 27.03.2024
Accepted: 01.04.2024
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2024, Volume 325, Issue 1, Pages S76–S98
DOI: https://doi.org/10.1134/S0081543824030064
Bibliographic databases:
Document Type: Article
UDC: 517.977
Language: Russian
Citation: A. G. Chentsov, D. A. Serkov, “Continuous dependence of sets in a space of measures and a program minimax problem”, Trudy Inst. Mat. i Mekh. UrO RAN, 30, no. 2, 2024, 277–299; Proc. Steklov Inst. Math. (Suppl.), 325, suppl. 1 (2024), S76–S98
Citation in format AMSBIB
\Bibitem{CheSer24}
\by A.~G.~Chentsov, D.~A.~Serkov
\paper Continuous dependence of sets in a space of measures and a program minimax problem
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2024
\vol 30
\issue 2
\pages 277--299
\mathnet{http://mi.mathnet.ru/timm2098}
\crossref{https://doi.org/10.21538/0134-4889-2024-30-2-277-299}
\elib{https://elibrary.ru/item.asp?id=67234343}
\edn{https://elibrary.ru/zywfas}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2024
\vol 325
\issue , suppl. 1
\pages S76--S98
\crossref{https://doi.org/10.1134/S0081543824030064}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85201615272}
Linking options:
  • https://www.mathnet.ru/eng/timm2098
  • https://www.mathnet.ru/eng/timm/v30/i2/p277
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025