Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2024, Volume 30, Number 2, Pages 222–242
DOI: https://doi.org/10.21538/0134-4889-2024-30-2-222-242
(Mi timm2095)
 

Package guidance problem for a fractional-order system

P. G. Surkovab

a N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
References:
Abstract: The problem of guaranteed closed-loop guidance to a given set at a given time is studied for a linear dynamical control system described by differential equations with a fractional derivative of the Caputo type. The initial state is a priori unknown, but belongs to a given finite set. The information on the position of the system is received online in the form of an observation signal. The solvability of the guidance problem for the control system is analyzed using the method of Osipov–Kryazhimskii program packages. The paper provides a brief overview of the results that develop the method of program packages and use it in guidance problems for various classes of systems. This method allows us to connect the solvability condition of the guaranteed closed-loop guidance problem for an original system with the solvability condition of the open-loop guidance problem for a special extended system. Following the technique of the method of program packages, a criterion for the solvability of the considered guidance problem is derived for a fractional-order system. In the case where the problem is solvable, a special procedure for constructing a guiding program package is given. The developed technique for analyzing the guaranteed closed-loop guidance problem and constructing a guiding control for an unknown initial state is illustrated by the example of a specific linear mechanical control system with a Caputo fractional derivative.
Keywords: control, incomplete information, linear systems, Caputo fractional derivative.
Funding agency Grant number
Russian Science Foundation 21-71-10070
This work was supported by the Russian Science Foundation (project no. 21-71-10070, https://rscf.ru/en/project/21-71-10070/).
Received: 15.04.2024
Revised: 02.05.2024
Accepted: 06.05.2024
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2024, Volume 325, Issue 1, Pages S212–S230
DOI: https://doi.org/10.1134/S0081543824030167
Bibliographic databases:
Document Type: Article
UDC: 517.977+517.23
Language: Russian
Citation: P. G. Surkov, “Package guidance problem for a fractional-order system”, Trudy Inst. Mat. i Mekh. UrO RAN, 30, no. 2, 2024, 222–242; Proc. Steklov Inst. Math. (Suppl.), 325, suppl. 1 (2024), S212–S230
Citation in format AMSBIB
\Bibitem{Sur24}
\by P.~G.~Surkov
\paper Package guidance problem for a fractional-order system
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2024
\vol 30
\issue 2
\pages 222--242
\mathnet{http://mi.mathnet.ru/timm2095}
\crossref{https://doi.org/10.21538/0134-4889-2024-30-2-222-242}
\elib{https://elibrary.ru/item.asp?id=67234340}
\edn{https://elibrary.ru/vvccic}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2024
\vol 325
\issue , suppl. 1
\pages S212--S230
\crossref{https://doi.org/10.1134/S0081543824030167}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85201617084}
Linking options:
  • https://www.mathnet.ru/eng/timm2095
  • https://www.mathnet.ru/eng/timm/v30/i2/p222
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025