Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2024, Volume 30, Number 2, Pages 188–202
DOI: https://doi.org/10.21538/0134-4889-2024-30-2-188-202
(Mi timm2093)
 

On a control reconstruction problem with nonconvex constraints

N. N. Subbotinaab, E. A. Krupennikovab

a N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
References:
Abstract: A control reconstruction problem for dynamic deterministic affine-controlled systems is considered. This problem consists of constructing piecewise constant approximations of an unknown control generating an observed trajectory from discrete inaccurate measurements of this trajectory. It is assumed that the controls are constrained by known nonconvex geometric constraints. In this case, sliding modes may appear. To describe the impact of sliding modes on the dynamics of the system, the theory of generalized controls is used. The notion of normal control is introduced. It is a control that generates an observed trajectory and is defined in a unique way. The aim of reconstruction is to find piecewise constant approximations of the normal control that satisfy given nonconvex geometric constraints. The convergence of approximations is understood in the sense of weak convergence in the $L^2$ space. A solution to the control reconstruction problem is proposed.
Keywords: inverse problems, control reconstruction, sliding modes, nonconvex constraints, weak convergence, generalized controls.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-02-2024-1377
The work was performed as part of research conducted in the Ural Mathematical Center with the financial support of the Ministry of Science and Higher Education of the Russian Federation (Agreement number 075-02-2024-1377).
Received: 07.02.2024
Revised: 15.04.2024
Accepted: 22.04.2024
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2024, Volume 325, Issue 1, Pages S179–S193
DOI: https://doi.org/10.1134/S0081543824030143
Bibliographic databases:
Document Type: Article
UDC: 517.977.58
MSC: 34H05, 49N45
Language: Russian
Citation: N. N. Subbotina, E. A. Krupennikov, “On a control reconstruction problem with nonconvex constraints”, Trudy Inst. Mat. i Mekh. UrO RAN, 30, no. 2, 2024, 188–202; Proc. Steklov Inst. Math. (Suppl.), 325, suppl. 1 (2024), S179–S193
Citation in format AMSBIB
\Bibitem{SubKru24}
\by N.~N.~Subbotina, E.~A.~Krupennikov
\paper On a control reconstruction problem with nonconvex constraints
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2024
\vol 30
\issue 2
\pages 188--202
\mathnet{http://mi.mathnet.ru/timm2093}
\crossref{https://doi.org/10.21538/0134-4889-2024-30-2-188-202}
\elib{https://elibrary.ru/item.asp?id=67234338}
\edn{https://elibrary.ru/ixjcyr}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2024
\vol 325
\issue , suppl. 1
\pages S179--S193
\crossref{https://doi.org/10.1134/S0081543824030143}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85201590582}
Linking options:
  • https://www.mathnet.ru/eng/timm2093
  • https://www.mathnet.ru/eng/timm/v30/i2/p188
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025