Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2024, Volume 30, Number 2, Pages 130–137
DOI: https://doi.org/10.21538/0134-4889-2024-30-2-130-137
(Mi timm2088)
 

On the continuity of the optimal time as a function of the initial state for linear controlled objects with integral constraints on controls

M. S. Nikol'skii

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
References:
Abstract: A traditional object of study in the mathematical theory of optimal control is a controlled object with geometric constraints on the control vector $u$. At the same time, it turns out that sometimes it is more convenient to impose integral constraints on the control vector $u$. For example, in the theory of automatic design of optimal controllers, it is sometimes assumed that the control vector $u$ is not subject to any geometric constraints, but there is a requirement that the control $u(t)$ and its squared length $|u(t )|^2$ are Lebesgue summable on the corresponding interval. This circumstance, as well as the fact that the quality criterion has the form of a quadratic functional, makes it possible to construct an optimal control under rather broad assumptions. Quadratic integral constraints on controls can be interpreted as some energy constraints. Controlled objects under integral constraints on the controls are given quite a lot of attention in the mathematical literature on control theory. We mention the works of N.N. Krasovskii, E.B. Lee, L. Markus, A.B. Kurzhanski, M.I. Gusev, I.V. Zykov, and their students. The paper studies a linear time-optimal problem, in which the terminal set is the origin, under an integral constraint on the control. Sufficient conditions are obtained under which the optimal time as a function of the initial state $x_0$ is continuous.
Keywords: control, controlled object, integral constraint, time optimality.
Received: 25.10.2023
Revised: 15.02.2024
Accepted: 19.02.2024
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2024, Volume 325, Issue 1, Pages S147–S154
DOI: https://doi.org/10.1134/S0081543824030118
Bibliographic databases:
Document Type: Article
UDC: 517.977
MSC: 49J15, 93C95
Language: Russian
Citation: M. S. Nikol'skii, “On the continuity of the optimal time as a function of the initial state for linear controlled objects with integral constraints on controls”, Trudy Inst. Mat. i Mekh. UrO RAN, 30, no. 2, 2024, 130–137; Proc. Steklov Inst. Math. (Suppl.), 325, suppl. 1 (2024), S147–S154
Citation in format AMSBIB
\Bibitem{Nik24}
\by M.~S.~Nikol'skii
\paper On the continuity of the optimal time as a function of the initial state for linear controlled objects with integral constraints on controls
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2024
\vol 30
\issue 2
\pages 130--137
\mathnet{http://mi.mathnet.ru/timm2088}
\crossref{https://doi.org/10.21538/0134-4889-2024-30-2-130-137}
\elib{https://elibrary.ru/item.asp?id=67234333}
\edn{https://elibrary.ru/nrxdfp}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2024
\vol 325
\issue , suppl. 1
\pages S147--S154
\crossref{https://doi.org/10.1134/S0081543824030118}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001295088800018}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85201579045}
Linking options:
  • https://www.mathnet.ru/eng/timm2088
  • https://www.mathnet.ru/eng/timm/v30/i2/p130
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:50
    Full-text PDF :2
    References:15
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025