Loading [MathJax]/jax/output/CommonHTML/jax.js
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2024, Volume 30, Number 2, Pages 68–85
DOI: https://doi.org/10.21538/0134-4889-2024-30-2-68-85
(Mi timm2084)
 

The method of comparison with a model equation in the study of inclusions in vector metric spaces

E. S. Zhukovskiya, E. A. Panasenkob

a Institute of Mathematics, Physics and Information Science, Tambov State University
b Tambov State University named after G.R. Derzhavin
References:
Abstract: For a given multivalued mapping F:XY and a given element ˜yY, the existence of a solution xX to the inclusion F(x)˜y and its estimates are studied. The sets X and Y are endowed with vector metrics PE+X and PM+Y, whose values belong to cones E+ and M+ of a Banach space E and a linear topological space M, respectively. The inclusion is compared with a “model” equation f(t)=0, where f:E+M. It is assumed that f can be written as f(t)g(t,t), where the mapping g:E+×E+M orderly covers the set {0}M with respect to the first argument and is antitone with respect to the second argument and g(0,0)M+. It is shown that in this case the equation f(t)=0 has a solution tE+. Further, conditions on the connection between f(0) and F(x0) and between the increments of f(t) for t[0,t] and the increments of F(x) for all x in the ball of radius t centered at x0 for some x0 are formulated, and it is shown that the inclusion has a solution in the ball under these conditions. The results on the operator inclusion obtained in the paper are applied to studying an integral inclusion.
Keywords: operator inclusion, existence and estimates of solutions, integral inclusion, vector metric space.
Funding agency Grant number
Russian Science Foundation 24-21-00272
The work was supported by the Russian Science Foundation (project no. 24-21-00272), https://rscf.ru/en/project/24-21-00272/.
Received: 15.02.2024
Revised: 26.02.2024
Accepted: 04.03.2024
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2024, Volume 325, Issue 1, Pages S239–S254
DOI: https://doi.org/10.1134/S0081543824030180
Bibliographic databases:
Document Type: Article
UDC: 517.988 + 517.968.4
MSC: 54E35, 47H04, 45G10
Language: Russian
Citation: E. S. Zhukovskiy, E. A. Panasenko, “The method of comparison with a model equation in the study of inclusions in vector metric spaces”, Trudy Inst. Mat. i Mekh. UrO RAN, 30, no. 2, 2024, 68–85; Proc. Steklov Inst. Math. (Suppl.), 325, suppl. 1 (2024), S239–S254
Citation in format AMSBIB
\Bibitem{ZhuPan24}
\by E.~S.~Zhukovskiy, E.~A.~Panasenko
\paper The method of comparison with a model equation in the study of inclusions in vector metric spaces
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2024
\vol 30
\issue 2
\pages 68--85
\mathnet{http://mi.mathnet.ru/timm2084}
\crossref{https://doi.org/10.21538/0134-4889-2024-30-2-68-85}
\elib{https://elibrary.ru/item.asp?id=67234329}
\edn{https://elibrary.ru/uhneiy}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2024
\vol 325
\issue , suppl. 1
\pages S239--S254
\crossref{https://doi.org/10.1134/S0081543824030180}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85208236961}
Linking options:
  • https://www.mathnet.ru/eng/timm2084
  • https://www.mathnet.ru/eng/timm/v30/i2/p68
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:116
    Full-text PDF :5
    References:19
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025