Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2023, Volume 29, Number 4, Pages 169–180
DOI: https://doi.org/10.21538/0134-4889-2023-29-4-169-180
(Mi timm2046)
 

On Submodularity and K$\mathfrak F$-Subnormality in Finite Groups

V. S. Monakhov, I. L. Sokhor

Gomel State University named after Francisk Skorina
References:
Abstract: Let $\mathfrak F$ be a formation, and let $G$ be a finite group. A subgroup $H$ of $G$ is called \lb $\mathrm{K}\mathfrak F$‑subnormal (submodular) in $G$ if there is a subgroup chain $H=H_0\le H_1 \le \ldots \le H_{n-1}\le H_n=G$ such that, for every $i$ either $H_{i}$ is normal in $H_{i+1}$ or $H_{i+1}^\mathfrak{F} \le H_i$ ($H_i$ is a modular subgroup of $H_{i+1}$, respectively). We prove that, in a group, a primary subgroup is submodular if and only if it is $\mathrm{K}\mathfrak U_1$‑subnormal. Here $\mathfrak U_1$ is a formation of all supersolvable groups of square-free exponent. Moreover, for a solvable subgroup-closed formation $\mathfrak{F}$, every solvable $\mathrm{K}\mathfrak{F}$‑subnormal subgroup of a group $G$ is contained in the solvable radical of $G$. We also obtain a series of applications of these results to the investigation of groups factorized by $\mathrm{K}\mathfrak{F}$‑subnormal and submodular subgroups.
Keywords: finite group, subnormal subgroup, submodular subgroup.
Funding agency Grant number
Belarusian Republican Foundation for Fundamental Research Ф23РНФ-237
This work was supported by the Belarusian Republican Foundation for Fundamental Research (project no. $\Phi$23PH$\Phi$-237).
Received: 13.08.2023
Revised: 06.10.2023
Accepted: 09.10.2023
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2023, Volume 323, Issue 1, Pages S168–S178
DOI: https://doi.org/10.1134/S0081543823060159
Bibliographic databases:
Document Type: Article
UDC: 512.542
MSC: 20D10, 20D35, 20D40
Language: Russian
Citation: V. S. Monakhov, I. L. Sokhor, “On Submodularity and K$\mathfrak F$-Subnormality in Finite Groups”, Trudy Inst. Mat. i Mekh. UrO RAN, 29, no. 4, 2023, 169–180; Proc. Steklov Inst. Math. (Suppl.), 323, suppl. 1 (2023), S168–S178
Citation in format AMSBIB
\Bibitem{MonSok23}
\by V.~S.~Monakhov, I.~L.~Sokhor
\paper On Submodularity and K$\mathfrak F$-Subnormality in Finite Groups
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2023
\vol 29
\issue 4
\pages 169--180
\mathnet{http://mi.mathnet.ru/timm2046}
\crossref{https://doi.org/10.21538/0134-4889-2023-29-4-169-180}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4650993}
\elib{https://elibrary.ru/item.asp?id=54950405}
\edn{https://elibrary.ru/iazeqh}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2023
\vol 323
\issue , suppl. 1
\pages S168--S178
\crossref{https://doi.org/10.1134/S0081543823060159}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85185488284}
Linking options:
  • https://www.mathnet.ru/eng/timm2046
  • https://www.mathnet.ru/eng/timm/v29/i4/p169
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024