Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2023, Volume 29, Number 4, Pages 146–154
DOI: https://doi.org/10.21538/0134-4889-2023-29-4-146-154
(Mi timm2044)
 

Periodic Groups with One Finite Nontrivial Sylow 2-Subgroup

D. V. Lytkinaa, V. D. Mazurovba

a Siberian State University of Telecommunications and Informatics, Novosibirsk
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
References:
Abstract: The following results are proved. Let $d$ be a natural number, and let $G$ be a group of finite even exponent such that each of its finite subgroups is contained in a subgroup isomorphic to the direct product of $m$ dihedral groups, where $m\le d$. Then $G$ is finite (and isomorphic to the direct product of at most $d$ dihedral groups). Next, suppose that $G$ is a periodic group and $p$ is an odd prime. If every finite subgroup of $G$ is contained in a subgroup isomorphic to the direct product $D_1\times D_2$, where $D_i$ is a dihedral group of order $2p^{r_i}$ with natural $r_i$, $i=1,2$, then $G=M_1\times M_2$, where $M_i=\langle H_i,t\rangle$, $t_i$ is an element of order $2$, $H_i$ is a locally cyclic $p$-group, and $h^{t_i}=h^{-1}$ for every $h\in H_i$, $i=1,2$. Now, suppose that $d$ is a natural number and $G$ is a solvable periodic group such that every of its finite subgroups is contained in a subgroup isomorphic to the direct product of at most $d$ dihedral groups. Then $G$ is locally finite and is an extension of an abelian normal subgroup by an elementary abelian $2$-subgroup of order at most $2^{2d}$.
Keywords: periodic group, exponent, Sylow 2-subgroup, dihedral group, direct product, saturating set.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0002
This work was supported by the Program for Fundamental Research of the Russian Academy of Sciences (project no. FWNF-2022-0002).
Received: 05.05.2023
Revised: 21.06.2023
Accepted: 26.06.2023
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2023, Volume 323, Issue 1, Pages S160–S167
DOI: https://doi.org/10.1134/S0081543823060147
Bibliographic databases:
Document Type: Article
UDC: 512.542
MSC: 20F50
Language: Russian
Citation: D. V. Lytkina, V. D. Mazurov, “Periodic Groups with One Finite Nontrivial Sylow 2-Subgroup”, Trudy Inst. Mat. i Mekh. UrO RAN, 29, no. 4, 2023, 146–154; Proc. Steklov Inst. Math. (Suppl.), 323, suppl. 1 (2023), S160–S167
Citation in format AMSBIB
\Bibitem{LytMaz23}
\by D.~V.~Lytkina, V.~D.~Mazurov
\paper Periodic Groups with One Finite Nontrivial Sylow 2-Subgroup
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2023
\vol 29
\issue 4
\pages 146--154
\mathnet{http://mi.mathnet.ru/timm2044}
\crossref{https://doi.org/10.21538/0134-4889-2023-29-4-146-154}
\elib{https://elibrary.ru/item.asp?id=54950403}
\edn{https://elibrary.ru/uedxwl}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2023
\vol 323
\issue , suppl. 1
\pages S160--S167
\crossref{https://doi.org/10.1134/S0081543823060147}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85185302843}
Linking options:
  • https://www.mathnet.ru/eng/timm2044
  • https://www.mathnet.ru/eng/timm/v29/i4/p146
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:156
    Full-text PDF :97
    References:26
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024