Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2023, Volume 29, Number 4, Pages 70–91
DOI: https://doi.org/10.21538/0134-4889-2023-29-4-70-91
(Mi timm2038)
 

This article is cited in 1 scientific paper (total in 1 paper)

On extremal trigonometric polynomials

V. P. Zastavnyi

Donetsk State University
Full-text PDF (354 kB) Citations (1)
References:
Abstract: Let $\mathscr{F}_n$ be the set of all trigonometric polynomials of order $\le n$, $n\in\mathbb{N}$. For multipliers $H:\mathscr{F}_n\to\mathscr{F}_n$, we prove an interpolation formula $H(f)(t)=\sum_{k=0}^{2n-1}\Lambda_k f\left(t-\tau+{k\pi}/{n}\right),$ which is used to obtain the following inequalities and criteria for an extremal polynomial in them (Theorem 4):
$$\int_{\mathbb{T}}J\left(|H(f)(t)|\right)\,dt \le \int_{\mathbb{T}}J\left(\varkappa|f(t)|\right)\,dt\,;\;\; \| H(f)\|_p\leqslant \varkappa\|f\|_p,\,1\le p\le\infty,\;\varkappa=|\Lambda_0|+\ldots+|\Lambda_{2n-1}|>0. $$
Here the function $J$ is convex and nondecreasing on $[0,+\infty)$. The main goal of this work is to describe all extremal polynomials in the above inequalities. Theorem 5 proves that if the function $J$ is convex and strictly increasing on $[0,+\infty)$ and two conditions are satisfied: $(1)$ $\exists s\in\mathbb{Z}:\,\overline{\Lambda_{s}} \Lambda_{s+1}<0$ and $(2)$ $\exists \varepsilon\in\mathbb{C}$, $|\varepsilon|=1:$ $\varepsilon \Lambda_k (-1)^k\ge0$, $k\in\mathbb{Z}$, then only polynomials of the form $f(t)=\mu e^{int}+\nu e^{-int}$, $\mu,\nu\in\mathbb{C}$ are extremal in these inequalities. The main cases in this theorem are the cases $p=\infty$ and $p=1$. Theorem 6 proves that if the function $J$ is convex and strictly increasing on $[0,+\infty)$ and the operator $H$ satisfies the Szegö condition (the nonnegativity of a special trigonometric polynomial), then, in all cases different from one exceptional case, only polynomials of the form $f(t)=\mu e^{int}+\nu e^{-int}$, $\mu,\nu\in\mathbb{C}$, are extremal in these inequalities. In the exceptional case, there are other extremal polynomials. In this paper we give general examples of operators $H$ that satisfy the conditions of Theorem 6 (Example 1, Theorems 7 and 8). In particular, S. T. Zavalishchin's operator (Example 2) and the fractional derivative operator $H(f)(t)=f^{(r,\beta)}(t)$, $\beta\in\mathbb{R}$, $r\ge1$, $\varkappa=n^r$ (Corollary 3), satisfy these conditions. In this paper we also describe extremal polynomials in the Trigub and Boas inequalities (for some values of the parameters, not only polynomials of the form $\mu e^{int}+\nu e^{-int}$ are extremal).
Keywords: extremal trigonometric polynomial, Bernstein condition, Szegö condition, Weil–Nagy derivative, Bernstein-Szegö inequality, positive definite function, Boas–Civin method.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FRRE-2023-0015
The research was carried out under a state assignment (code FRRE-2023-0015 in the Unified State Information System for Recording Research, Development, and Technological Work for Civil Purposes).
Received: 28.06.2023
Revised: 09.08.2023
Accepted: 11.09.2023
Bibliographic databases:
Document Type: Article
UDC: 517.518.86
MSC: 41A17
Language: Russian
Citation: V. P. Zastavnyi, “On extremal trigonometric polynomials”, Trudy Inst. Mat. i Mekh. UrO RAN, 29, no. 4, 2023, 70–91
Citation in format AMSBIB
\Bibitem{Zas23}
\by V.~P.~Zastavnyi
\paper On extremal trigonometric polynomials
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2023
\vol 29
\issue 4
\pages 70--91
\mathnet{http://mi.mathnet.ru/timm2038}
\crossref{https://doi.org/10.21538/0134-4889-2023-29-4-70-91}
\elib{https://elibrary.ru/item.asp?id=54950397}
\edn{https://elibrary.ru/lhceml}
Linking options:
  • https://www.mathnet.ru/eng/timm2038
  • https://www.mathnet.ru/eng/timm/v29/i4/p70
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:199
    Full-text PDF :87
    References:29
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024