Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2023, Volume 29, Number 3, Pages 106–127
DOI: https://doi.org/10.21538/0134-4889-2023-29-3-106-127
(Mi timm2021)
 

This article is cited in 1 scientific paper (total in 1 paper)

On Operator Inclusions in Spaces with Vector-Valued Metrics

E. A. Panasenko

Tambov State University named after G.R. Derzhavin
Full-text PDF (321 kB) Citations (1)
References:
Abstract: We consider an inclusion $\widetilde y\in F(x)$ with a multivalued mapping acting in spaces with vector-valued metrics whose values are elements of cones in Banach spaces and can be infinite. A statement about the existence of a solution $x \in X$ and an estimate of its deviation from a given element $x_0 \in X$ in a vector-valued metric are obtained. This result extends the known theorems on similar operator equations and inclusions in metric spaces and in the spaces with $n$-dimensional metric to a more general case and, applied to particular classes of functional equations and inclusions, allows to get less restrictive, compared to known, solvability conditions as well as more precise estimates of solutions. We apply this result to the integral inclusion
$$ \widetilde{y}(t)\in f\Bigl(t,\int_a^b \varkappa(t,s) x(s)\,ds, x(t) \Bigr), \ \ t \in [a,b], $$
where the function $\widetilde y$ is measurable, the mapping $f$ satisfies the Carathéodory conditions, and the solution $x$ is required to be only measurable (the integrability of $x$ is not assumed).
Keywords: space with vector-valued metric, multivalued mapping, vector metric regularity, Lipschitz property with operator coefficient, operator inclusion, integral inclusion.
Funding agency Grant number
Russian Science Foundation 22-21-00772
This work was supported by the Russian Science Foundation (project no. 22- 21-00772, https://rscf.ru/project/22-21-00772/).
Received: 14.06.2023
Revised: 18.08.2023
Accepted: 21.08.2023
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2023, Volume 323, Issue 1, Pages S222–S242
DOI: https://doi.org/10.1134/S0081543823060196
Bibliographic databases:
Document Type: Article
UDC: 517.988.6+515.124.2
MSC: 54E35, 54H25, 34K09
Language: Russian
Citation: E. A. Panasenko, “On Operator Inclusions in Spaces with Vector-Valued Metrics”, Trudy Inst. Mat. i Mekh. UrO RAN, 29, no. 3, 2023, 106–127; Proc. Steklov Inst. Math. (Suppl.), 323, suppl. 1 (2023), S222–S242
Citation in format AMSBIB
\Bibitem{Pan23}
\by E.~A.~Panasenko
\paper On Operator Inclusions in Spaces with Vector-Valued Metrics
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2023
\vol 29
\issue 3
\pages 106--127
\mathnet{http://mi.mathnet.ru/timm2021}
\crossref{https://doi.org/10.21538/0134-4889-2023-29-3-106-127}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4649595}
\elib{https://elibrary.ru/item.asp?id=54393170}
\edn{https://elibrary.ru/sbemqk}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2023
\vol 323
\issue , suppl. 1
\pages S222--S242
\crossref{https://doi.org/10.1134/S0081543823060196}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85185244939}
Linking options:
  • https://www.mathnet.ru/eng/timm2021
  • https://www.mathnet.ru/eng/timm/v29/i3/p106
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:74
    Full-text PDF :9
    References:11
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024