Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2023, Volume 29, Number 2, Pages 287–293
DOI: https://doi.org/10.21538/0134-4889-2023-29-2-287-293
(Mi timm2014)
 

Reconstruction of a Function Analytic in a Disk from the Boundary Values of Its Real Part Using Interpolation Wavelets

N. I. Chernykh

N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
References:
Abstract: For a function $f(z)$ analytic in a disk, a method of approximate reconstruction from known (or arbitrarily specified) boundary values of its real part (under the condition of its continuity) using interpolation wavelets is proposed; the method is easy to implement numerically. Despite the fact that there are known exact analytical formulas for solving this problem, the explicit formulas for approximating the function $f(z)$ proposed here are much easier to apply in practice, since the previously known exact formulas lead to the necessity to apply numerical integration methods when calculating convolutions of functions with Poisson or Schwartz kernels. For the approximations used in this paper, effective upper bounds are obtained for the error of approximation of functions analytic in the disk by interpolation wavelets in the spaces $L_p(0,2\pi)$ for any $p\ge 2$. These estimates can be used to find the parameters of the wavelets from a desired accuracy of recovering the function $f(z)$. Note that if the real part of $f(z)$ is continuous on the boundary of the disk, the continuity of $f(z)$ in the closure of the disk cannot be guaranteed; that is why it is impossible to estimate the approximation error for $f(z)$ in the uniform metric (for $p=\infty$) in the general case.
Keywords: multiresolution approximation, scaling function, interpolation wavelets, trigonometric polynomials, approximation order, function approximation.
Received: 03.04.2023
Revised: 24.04.2023
Accepted: 15.05.2023
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2023, Volume 323, Issue 1, Pages S78–S84
DOI: https://doi.org/10.1134/S0081543823060068
Bibliographic databases:
Document Type: Article
UDC: 517.518.832
MSC: 42A10, 42B35, 65T60
Language: Russian
Citation: N. I. Chernykh, “Reconstruction of a Function Analytic in a Disk from the Boundary Values of Its Real Part Using Interpolation Wavelets”, Trudy Inst. Mat. i Mekh. UrO RAN, 29, no. 2, 2023, 287–293; Proc. Steklov Inst. Math. (Suppl.), 323, suppl. 1 (2023), S78–S84
Citation in format AMSBIB
\Bibitem{Che23}
\by N.~I.~Chernykh
\paper Reconstruction of a Function Analytic in a Disk from the Boundary Values of Its Real Part Using Interpolation Wavelets
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2023
\vol 29
\issue 2
\pages 287--293
\mathnet{http://mi.mathnet.ru/timm2014}
\crossref{https://doi.org/10.21538/0134-4889-2023-29-2-287-293}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4610507}
\elib{https://elibrary.ru/item.asp?id=53846824}
\edn{https://elibrary.ru/cddlis}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2023
\vol 323
\issue , suppl. 1
\pages S78--S84
\crossref{https://doi.org/10.1134/S0081543823060068}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85185315463}
Linking options:
  • https://www.mathnet.ru/eng/timm2014
  • https://www.mathnet.ru/eng/timm/v29/i2/p287
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024