Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2023, Volume 29, Number 2, Pages 248–259
DOI: https://doi.org/10.21538/0134-4889-2023-29-2-248-259
(Mi timm2011)
 

This article is cited in 1 scientific paper (total in 1 paper)

Quasilinear Equations with a Sectorial Set of Operators at Gerasimov–Caputo Derivatives

V. E. Fedorov, K. V. Boyko

Chelyabinsk State University
Full-text PDF (241 kB) Citations (1)
References:
Abstract: The issues of unique solvability of the Cauchy problem are studied for a quasilinear equation solved with respect to the highest fractional Gerasimov–Caputo derivative in a Banach space with closed operators from the class $A_{\alpha,G}^{n}$ in the linear part and with a nonlinear operator continuous in the graph norm. A theorem on the local existence and uniqueness of a solution to the Cauchy problem is proved in the case of a locally Lipschitz nonlinear operator. Under the nonlocal Lipschitz condition for the nonlinear operator, the existence of a unique solution on a predetermined interval is shown. Abstract results are illustrated by examples of initial–boundary value problems for partial differential equations with Gerasimov–Caputo time derivatives.
Keywords: Gerasimov–Caputo fractional derivative, Cauchy problem, sectorial set of operators, resolving family of operators, quasilinear equation, local solution, nonlocal solution, initial–boundary value problem.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation НШ-2708.2022.1.1
This work was supported by the RF President’s Grant for State Support of Leading Scientific Schools (project no. 2708.2022.1.1).
Received: 28.02.2023
Revised: 15.03.2023
Accepted: 20.03.2023
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2023, Volume 321, Issue 1, Pages S78–S89
DOI: https://doi.org/10.1134/S0081543823030082
Bibliographic databases:
Document Type: Article
UDC: 517.9
MSC: 35R11, 34G20, 34A08
Language: Russian
Citation: V. E. Fedorov, K. V. Boyko, “Quasilinear Equations with a Sectorial Set of Operators at Gerasimov–Caputo Derivatives”, Trudy Inst. Mat. i Mekh. UrO RAN, 29, no. 2, 2023, 248–259; Proc. Steklov Inst. Math. (Suppl.), 321, suppl. 1 (2023), S78–S89
Citation in format AMSBIB
\Bibitem{FedBoy23}
\by V.~E.~Fedorov, K.~V.~Boyko
\paper Quasilinear Equations with a Sectorial Set of Operators at Gerasimov--Caputo Derivatives
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2023
\vol 29
\issue 2
\pages 248--259
\mathnet{http://mi.mathnet.ru/timm2011}
\crossref{https://doi.org/10.21538/0134-4889-2023-29-2-248-259}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4610504}
\elib{https://elibrary.ru/item.asp?id=53846820}
\edn{https://elibrary.ru/hptxqe}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2023
\vol 321
\issue , suppl. 1
\pages S78--S89
\crossref{https://doi.org/10.1134/S0081543823030082}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85185483296}
Linking options:
  • https://www.mathnet.ru/eng/timm2011
  • https://www.mathnet.ru/eng/timm/v29/i2/p248
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:96
    Full-text PDF :24
    References:21
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024