Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2023, Volume 29, Number 1, Pages 233–253
DOI: https://doi.org/10.21538/0134-4889-2023-29-1-233-253
(Mi timm1990)
 

Block designs, permutation groups and prime values of polynomials

G. A. Jonesa, A. K. Zvonkinb

a University of Southampton
b Universite Bordeaux 1, Laboratoire Bordelais de Recherche en Informatique
References:
Abstract: A recent construction by Amarra, Devillers and Praeger of block designs with specific parameters and large symmetry groups depends on certain quadratic polynomials, with integer coefficients, taking prime power values. Similarly, a recent construction by Hujdurović, Kutnar, Kuzma, Marušič, Miklavič and Orel of permutation groups with specific intersection densities depends on certain cyclotomic polynomials taking prime values. The Bunyakovsky Conjecture, if true, would imply that each of these polynomials takes infinitely many prime values, giving infinite families of block designs and permutation groups with the required properties. We have found large numbers of prime values of these polynomials, and the numbers found agree very closely with the estimates for them provided by Li's recent modification of the Bateman–Horn Conjecture. While this does not prove that these polynomials take infinitely many prime values, it provides strong evidence for this, and it also adds extra support for the validity of the Bunyakovsky and Bateman–Horn Conjectures.
Keywords: Block design, permutation group, intersection density, polynomial, prime number, Bateman–Horn Conjecture, Bunyakovsky Conjecture.
Funding agency Grant number
Agence Nationale de la Recherche ANR-19-CE48-0011
Alexander Zvonkin was partially supported by the ANR project Combiné (ANR-19-CE48-0011).
Received: 30.09.2021
Revised: 08.12.2022
Accepted: 09.12.2022
Bibliographic databases:
Document Type: Article
MSC: 05B05, 11N32
Language: English
Citation: G. A. Jones, A. K. Zvonkin, “Block designs, permutation groups and prime values of polynomials”, Trudy Inst. Mat. i Mekh. UrO RAN, 29, no. 1, 2023, 233–253
Citation in format AMSBIB
\Bibitem{JonZvo23}
\by G.~A.~Jones, A.~K.~Zvonkin
\paper Block designs, permutation groups and prime values of polynomials
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2023
\vol 29
\issue 1
\pages 233--253
\mathnet{http://mi.mathnet.ru/timm1990}
\crossref{https://doi.org/10.21538/0134-4889-2023-29-1-233-253}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4582805}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001027106500018}
\elib{https://elibrary.ru/item.asp?id=50358620}
\edn{https://elibrary.ru/hqvale}
Linking options:
  • https://www.mathnet.ru/eng/timm1990
  • https://www.mathnet.ru/eng/timm/v29/i1/p233
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:42
    Full-text PDF :14
    References:15
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024