Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2023, Volume 29, Number 1, Pages 180–189
DOI: https://doi.org/10.21538/0134-4889-2023-29-1-180-189
(Mi timm1986)
 

Zeros of Solutions of Third-Order L–A Pairs and Linearizable Ordinary Differential Equations

B. I. Suleimanov

Institute of Mathematics with Computing Centre, Ufa Federal Research Centre, Russian Academy of Sciences, Ufa
References:
Abstract: We study the form of the zero lines $x=\varphi(t)$ of simultaneous solutions to an L–A pair of general form composed of an evolution equation $\Psi'_t=\Psi''_{xx}/2-G(t, x)\Psi$ and an ordinary differential equation $\Psi'''_{xxx}=K(t,x)\Psi''_{xx}+L(t,x)\Psi'_{x}+M (t,x)\Psi$. It is shown that such lines are given by solutions of a second-order nonlinear ordinary differential equation $\varphi''_{tt}=f(t,\varphi,\varphi'_t)$. Its right-hand side $f(t,\varphi,\varphi'_t)$ is a cubic polynomial in the derivative $\varphi'_t$ with coefficients explicitly determined from the functions $G(t,x)$, $K(t,x )$, $L(t,x)$, and $M(t,x)$. A procedure for integrating this nonlinear equation is described; in this procedure, initial value problems for two simultaneous third-order linear ordinary differential equations with independent variables $x$ and $t$ are solved successively, and then the implicit function theorem is applied. It is established that this nonlinear ordinary differential equation belongs to the linearizable class of equations that are reduced by point changes to the equation $\tilde{\varphi}''_{\tilde{t}\tilde{t}}=0$. These points changes, as shown in S. Lie's classical work, are explicitly written in terms of simultaneous solutions of two homogeneous systems of third-order linear differential equations with different independent variables. The integration procedures for nonlinear ordinary differential equations described in Lie's work and in the present paper are compared. It is noted that the problem of describing the zeros of simultaneous solutions of similar L–A pairs of higher order is of interest. It is conjectured that the solution of this problem can be connected with an integration procedure for linearizable nonlinear ordinary differential equations of order greater than the second.
Keywords: integrability, simultaneous solutions, ordinary differential equations, nonlinearity, point changes, linearizability.
Received: 16.01.2023
Revised: 28.01.2023
Accepted: 30.01.2023
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2023, Volume 321, Issue 1, Pages S230–S238
DOI: https://doi.org/10.1134/S0081543823030197
Bibliographic databases:
Document Type: Article
UDC: 517.925
MSC: 34A25, 34A34
Language: Russian
Citation: B. I. Suleimanov, “Zeros of Solutions of Third-Order L–A Pairs and Linearizable Ordinary Differential Equations”, Trudy Inst. Mat. i Mekh. UrO RAN, 29, no. 1, 2023, 180–189; Proc. Steklov Inst. Math. (Suppl.), 321, suppl. 1 (2023), S230–S238
Citation in format AMSBIB
\Bibitem{Sul23}
\by B.~I.~Suleimanov
\paper Zeros of Solutions of Third-Order L--A Pairs and Linearizable Ordinary Differential Equations
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2023
\vol 29
\issue 1
\pages 180--189
\mathnet{http://mi.mathnet.ru/timm1986}
\crossref{https://doi.org/10.21538/0134-4889-2023-29-1-180-189}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4582801}
\elib{https://elibrary.ru/item.asp?id=50358616}
\edn{https://elibrary.ru/jyqtgi}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2023
\vol 321
\issue , suppl. 1
\pages S230--S238
\crossref{https://doi.org/10.1134/S0081543823030197}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001027106500014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85189147690}
Linking options:
  • https://www.mathnet.ru/eng/timm1986
  • https://www.mathnet.ru/eng/timm/v29/i1/p180
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:72
    Full-text PDF :18
    References:17
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024