Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2023, Volume 29, Number 1, Pages 127–142
DOI: https://doi.org/10.21538/0134-4889-2023-29-1-127-142
(Mi timm1982)
 

Zero-Order Asymptotics for the Solution of One Type of Singularly Perturbed Linear–Quadratic Control Problems in the Critical Case

G. A. Kurinaab, N. T. Hoaic

a Voronezh State University
b Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, Moscow
c Vietnam National University
References:
Abstract: We consider a linear–quadratic control problem in which there is the second power of a small parameter at the derivative of the state variable and the first power of the parameter both in the control term of the state equation and at the quadratic form with respect to the control variable in the performance index; moreover, the state equation represents a critical case of singular perturbation theory. A zero-order asymptotic expansion of the solution is constructed using the so-called direct scheme method in which a postulated asymptotic expansion of the solution is substituted directly into the problem statement and problems for finding the asymptotic terms are stated.
Keywords: linear–quadratic control problem, singular perturbations, critical case, asymptotics of solution.
Funding agency Grant number
Russian Science Foundation 21-11-00202
National Foundation for Science and Technology Development (Vietnam) 101.02-2021.43
The research of the first author was supported by the Russian Science Foundation (project no. 21-11-00202), and the research of the second author was supported by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) (project no. 101.02-2021.43).
Received: 25.01.2023
Revised: 15.02.2023
Accepted: 20.02.2023
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2023, Volume 321, Issue 1, Pages S154–S169
DOI: https://doi.org/10.1134/S0081543823030148
Bibliographic databases:
Document Type: Article
UDC: 517.9
MSC: 34H05, 34E15
Language: Russian
Citation: G. A. Kurina, N. T. Hoai, “Zero-Order Asymptotics for the Solution of One Type of Singularly Perturbed Linear–Quadratic Control Problems in the Critical Case”, Trudy Inst. Mat. i Mekh. UrO RAN, 29, no. 1, 2023, 127–142; Proc. Steklov Inst. Math. (Suppl.), 321, suppl. 1 (2023), S154–S169
Citation in format AMSBIB
\Bibitem{KurHoa23}
\by G.~A.~Kurina, N.~T.~Hoai
\paper Zero-Order Asymptotics for the Solution of One Type of Singularly Perturbed Linear--Quadratic Control Problems in the Critical Case
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2023
\vol 29
\issue 1
\pages 127--142
\mathnet{http://mi.mathnet.ru/timm1982}
\crossref{https://doi.org/10.21538/0134-4889-2023-29-1-127-142}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4582797}
\elib{https://elibrary.ru/item.asp?id=50358612}
\edn{https://elibrary.ru/lzdidf}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2023
\vol 321
\issue , suppl. 1
\pages S154--S169
\crossref{https://doi.org/10.1134/S0081543823030148}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001027106500010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85171353606}
Linking options:
  • https://www.mathnet.ru/eng/timm1982
  • https://www.mathnet.ru/eng/timm/v29/i1/p127
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025