Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2023, Volume 29, Number 1, Pages 91–101
DOI: https://doi.org/10.21538/0134-4889-2023-29-1-91-101
(Mi timm1979)
 

This article is cited in 3 scientific papers (total in 3 papers)

Perturbation of a Simple Wave in a Domain Wall Model

L. A. Kalyakin

Institute of Mathematics with Computing Centre, Ufa Federal Research Centre, Russian Academy of Sciences, Ufa
Full-text PDF (299 kB) Citations (3)
References:
Abstract: A nonlinear hyperbolic partial differential equation similar to the sine-Gordon equation is considered; it models the dynamics of a domain wall in a weak ferromagnet. If the coefficients are constant, there is a solution in the form of a simple (traveling) wave. In particular cases, it is written in terms of elementary functions. For an equation with variable coefficients, the solutions cannot be written explicitly. In the case of slowly varying coefficients, an asymptotic solution is constructed. The leading order term of the asymptotics represents a simple wave, which is found as a solution to an ordinary nonlinear differential equation with slowly varying coefficients. Different methods for calculating the speed of such a wave are discussed and compared. It is found that the effectiveness of a certain method depends on the ratio between the coefficients of the original equation.
Keywords: simple wave, perturbation, small parameter, asymptotics.
Received: 29.12.2022
Revised: 17.01.2023
Accepted: 23.01.2023
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2023, Volume 321, Issue 1, Pages S90–S100
DOI: https://doi.org/10.1134/S0081543823030094
Bibliographic databases:
Document Type: Article
UDC: 517.968
MSC: 35L70, 34E10
Language: Russian
Citation: L. A. Kalyakin, “Perturbation of a Simple Wave in a Domain Wall Model”, Trudy Inst. Mat. i Mekh. UrO RAN, 29, no. 1, 2023, 91–101; Proc. Steklov Inst. Math. (Suppl.), 321, suppl. 1 (2023), S90–S100
Citation in format AMSBIB
\Bibitem{Kal23}
\by L.~A.~Kalyakin
\paper Perturbation of a Simple Wave in a Domain Wall Model
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2023
\vol 29
\issue 1
\pages 91--101
\mathnet{http://mi.mathnet.ru/timm1979}
\crossref{https://doi.org/10.21538/0134-4889-2023-29-1-91-101}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4582794}
\elib{https://elibrary.ru/item.asp?id=50358609}
\edn{https://elibrary.ru/hbeayc}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2023
\vol 321
\issue , suppl. 1
\pages S90--S100
\crossref{https://doi.org/10.1134/S0081543823030094}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001027106500007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85171379653}
Linking options:
  • https://www.mathnet.ru/eng/timm1979
  • https://www.mathnet.ru/eng/timm/v29/i1/p91
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025