Abstract:
A nonlinear hyperbolic partial differential equation similar to the sine-Gordon equation is considered; it models the dynamics of a domain wall in a weak ferromagnet. If the coefficients are constant, there is a solution in the form of a simple (traveling) wave. In particular cases, it is written in terms of elementary functions. For an equation with variable coefficients, the solutions cannot be written explicitly. In the case of slowly varying coefficients, an asymptotic solution is constructed. The leading order term of the asymptotics represents a simple wave, which is found as a solution to an ordinary nonlinear differential equation with slowly varying coefficients. Different methods for calculating the speed of such a wave are discussed and compared. It is found that the effectiveness of a certain method depends on the ratio between the coefficients of the original equation.
Keywords:
simple wave, perturbation, small parameter, asymptotics.
Citation:
L. A. Kalyakin, “Perturbation of a Simple Wave in a Domain Wall Model”, Trudy Inst. Mat. i Mekh. UrO RAN, 29, no. 1, 2023, 91–101; Proc. Steklov Inst. Math. (Suppl.), 321, suppl. 1 (2023), S90–S100
\Bibitem{Kal23}
\by L.~A.~Kalyakin
\paper Perturbation of a Simple Wave in a Domain Wall Model
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2023
\vol 29
\issue 1
\pages 91--101
\mathnet{http://mi.mathnet.ru/timm1979}
\crossref{https://doi.org/10.21538/0134-4889-2023-29-1-91-101}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4582794}
\elib{https://elibrary.ru/item.asp?id=50358609}
\edn{https://elibrary.ru/hbeayc}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2023
\vol 321
\issue , suppl. 1
\pages S90--S100
\crossref{https://doi.org/10.1134/S0081543823030094}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001027106500007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85171379653}
Linking options:
https://www.mathnet.ru/eng/timm1979
https://www.mathnet.ru/eng/timm/v29/i1/p91
This publication is cited in the following 3 articles:
L. A. Kalyakin, E. G. Ekomasov, “Simulation of Domain Walls: Simple Waves in the Magnetodynamics Equation”, Comput. Math. and Math. Phys., 64:1 (2024), 85
L. A. Kalyakin, “Stability of a Traveling Wave on a Saddle-Node Trajectory”, Math. Notes, 115:6 (2024), 931–943
L. A. Kalyakin, E. G. Ekomasov, “Modelirovanie domennykh stenok: prostye volny v uravnenii magnitodinamiki”, Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, 64:1 (2024)