Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2023, Volume 29, Number 1, Pages 36–55
DOI: https://doi.org/10.21538/0134-4889-2023-29-1-36-55
(Mi timm1975)
 

Operator Estimates in Two-Dimensional Problems with a Frequent Alternation in the Case of Small Parts with the Dirichlet Condition

D. I. Borisovabc

a Institute of Mathematics with Computing Centre, Ufa Federal Research Centre, Russian Academy of Sciences, Ufa
b Bashkir State Pedagogical University n. a. M. Akmulla, Ufa
c University of Hradec Králové
References:
Abstract: A two-dimensional boundary value problem is studied for a general scalar elliptic second-order equation of the general form with frequent alternation of boundary conditions. The alternation is defined on small, closely spaced parts of the boundary on which the Dirichlet boundary condition and the nonlinear Robin boundary condition are set alternately. The distribution and size of these segments are arbitrary. The case is considered when, upon homogenization, the Dirichlet boundary condition completely disappears and only the original nonlinear Robin boundary condition remains. The main result is estimates for the $W_2^1$- and $L_2$-norms of the difference between the solutions of the perturbed and homogenized problems, which are uniform in the $L_2$-norm of the right-hand side and characterize the rate of convergence. It is shown that these estimates are order sharp.
Keywords: two-dimensional boundary value problem, elliptic equation, frequent alternation, homogenization, operator estimate.
Funding agency Grant number
Czech Science Foundation 22-18739S
Ministry of Education of the Russian Federation 073-03-2023-010
The work is partially supported by the Grant Agency of Czech Republic (grant no. 22-18739S) and by the Ministry of Education of the Russian Federation in the framework of the state task (agreement No.073-03-2023-010 on 26.01.2023).
Received: 30.01.2023
Revised: 16.02.2023
Accepted: 20.02.2023
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2023, Volume 321, Issue 1, Pages S33–S52
DOI: https://doi.org/10.1134/S0081543823030057
Bibliographic databases:
Document Type: Article
UDC: 517.984
MSC: 35B27, 35B40
Language: Russian
Citation: D. I. Borisov, “Operator Estimates in Two-Dimensional Problems with a Frequent Alternation in the Case of Small Parts with the Dirichlet Condition”, Trudy Inst. Mat. i Mekh. UrO RAN, 29, no. 1, 2023, 36–55; Proc. Steklov Inst. Math. (Suppl.), 321, suppl. 1 (2023), S33–S52
Citation in format AMSBIB
\Bibitem{Bor23}
\by D.~I.~Borisov
\paper Operator Estimates in Two-Dimensional Problems with a Frequent Alternation in the Case of Small Parts with the Dirichlet Condition
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2023
\vol 29
\issue 1
\pages 36--55
\mathnet{http://mi.mathnet.ru/timm1975}
\crossref{https://doi.org/10.21538/0134-4889-2023-29-1-36-55}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4538500}
\elib{https://elibrary.ru/item.asp?id=50358604}
\edn{https://elibrary.ru/jzwkpj}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2023
\vol 321
\issue , suppl. 1
\pages S33--S52
\crossref{https://doi.org/10.1134/S0081543823030057}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001027106500003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85171379977}
Linking options:
  • https://www.mathnet.ru/eng/timm1975
  • https://www.mathnet.ru/eng/timm/v29/i1/p36
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025