Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2022, Volume 28, Number 4, Pages 103–120
DOI: https://doi.org/10.21538/0134-4889-2022-28-4-103-120
(Mi timm1954)
 

Order equalities in the spaces $L_p(\mathbb T), 1$ < $p$ < $\infty$, for best approximations and moduli of smoothness of derivatives of periodic functions with monotone Fourier coefficients

N. A. Ilyasovab

a Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences, Baku
b Moscow Center for Fundamental and Applied Mathematics
References:
Abstract: Denote by $M_p^{(r)}(\mathbb T)$ the class of all functions $f\in L_p(\mathbb T)$ whose Fourier coefficients satisfy the conditions: $a_0(f)=0$, $0<n^ra_n(f)\downarrow 0$, and $0<n^rb_n(f)\downarrow 0$ $(n\uparrow \infty)$, where $1<p<\infty$, $r\in \mathbb N$, and $\mathbb T=(-\pi,\pi]$. We establish order equalities in the class $M_p^{(r)}(\mathbb T)$ between the best approximations $E_{n-1}(f^{(r)})_p$ by trigonometric polynomials of order $n-1$ and the $k$th-order moduli of smoothness $\omega_k(f^{(r)};\pi/n)_p$ of $r$th-order derivatives $f^{(r)}$, on the one hand, and various expressions containing elements of the sequences $\{E_{\nu-1}(f^{(r)})_p\}_{\nu=1}^{\infty}$ and $\{\omega_l(f;\pi/\nu)_p\}_{\nu=1}^{\infty}$, where $l,k\in \mathbb N$ and $l>r$, on the other hand. The main results obtained in the present paper can be briefly described as follows. A necessary and sufficient condition for a function $f$ from $M_p^{(r)}(\mathbb T)$ to lie in the class $L_p^{(r)}(\mathbb T)$ (this class consists of all functions $f\in L_p(\mathbb T)$ with absolutely continuous $(r-1)$th derivatives $f^{(r-1)}$ and $f^{(r)}\in L_p(\mathbb T)$; here $f^{(0)}\equiv f$ and $L_p^{(0)}(\mathbb T)\equiv L_p(\mathbb T)$) is that one of the following equivalent conditions is satisfied: $E(f;p;r)\!:=\!\big(\sum_{n=1}^{\infty}n^{pr-1}\!E_{n-1}^{p}(f)_p\big)^{1/p}<\infty$ $\Leftrightarrow$ $\Omega(f;p;l;r)\!:=\big(\sum_{n=1}^{\infty}n^{pr-1}\omega_{l}^{p}(f;\pi/n)_p\big)^{1/p}<\infty~\Leftrightarrow$ $\sigma(f;p;r):=\big(\sum_{n=1}^{\infty}n^{pr+p-2}(a_n(f)+b_n(f))^p\big)^{1/p}<\infty$. Moreover, the following order equalities hold:
$(a)\ E(f;p;r)\asymp \|f^{(r)}\|_p \asymp \sigma(f;p;r) \asymp\Omega(f;p;l;r)$;
$(b)$ $E_{n-1}(f^{(r)})_p\asymp n^r E_{n-1}(f)_p+\big(\sum_{\nu=n+1}^{\infty}\nu^{pr-1}E_{\nu-1}^{p}(f)_p\big)^{1/p},\ n\in \mathbb N$;
$(c)$ $\omega_k(f^{(r)};\pi/n)_p\asymp n^{-k}\big(\sum_{\nu=1}^{n}\nu^{p(k+r)-1}E_{\nu-1}^{p}(f)_p\big)^{1/p}+ \big(\sum_{\nu=n+1}^{\infty}\nu^{pr-1}E_{\nu-1}^{p}(f)_p\big)^{1/p},\ n\in \mathbb N$;
$(d)$ $E_{n-1}(f^{(r)})_p+n^r\omega_l(f;\pi/n)_p\asymp \big(\sum_{\nu=n+1}^{\infty}\nu^{pr-1} \omega_l^{p}(f;\pi/\nu)_p\big)^{1/p}\asymp \asymp\omega_k(f^{(r)};\pi/n)_p+n^r\omega_l(f;\pi/n)_p,\ n\in \mathbb N,\ l<k+r$;
$(e)$ $n^{-(l-r)}\big(\sum_{\nu=1}^{n}\nu^{p(l-r)-1}E_{\nu-1}^{p}(f^{(r)})_p\big)^{1/p}\asymp \big(\sum_{\nu=n+1}^{\infty}\nu^{pr-1}\omega_l^{p}(f;\pi/\nu)_p\big)^{1/p}\asymp \asymp n^{-(l-r)}\big(\sum_{\nu=1}^{n}\nu^{p(l-r)-1}\omega_k^p (f^{(r)};\pi/\nu)_p\big)^{1/p},\ n\in \mathbb N,\ l<k+r$;
$(f)$ $\omega_k(f^{(r)};\pi/n)_p \asymp \big(\sum_{\nu=n+1}^{\infty}\nu^{pr-1}\omega_l^{p}(f;\pi/\nu)_p\big)^{1/p},\ n\in \mathbb N,\ l=k+r$;
$(g)$ $\omega_k(f^{(r)};\pi/n)_p \asymp n^{-k}\big(\sum_{\nu=1}^{n}\nu^{p(k+r)-1}\omega_l^{p}(f;\pi/\nu)_p\big)^{1/p}+ \big(\sum_{\nu=n+1}^{\infty}\nu^{pr-1}\omega_l^{p}(f;\pi/\nu)_p\big)^{1/p}$, $n\in \mathbb N$, $l>k+r$.
In the general case, one cannot drop the term $n^r\omega_l(f;\pi/n)_p$ in item $(d)$ either in the lower estimate on the left-hand side (for $l>r$) or in the upper estimate on the right-hand side (for $r<l<k+r$). However, if $\{ E_{n-1}(f)_p\}_{n=1}^{\infty}\in B_l^{(p)}$ $(\Rightarrow \{E_{n-1}(f^{(r)})_p\}_{n=1}^{\infty}\in B_{l-r}^{(p)})$ or $\{\omega_l(f;\pi/n)_p\}_{n=1}^{\infty}\in B_l^{(p)}$ $(\Rightarrow \{ \omega_k(f^{(r)};\pi/n)_p\}_{n=1}^{\infty}\in B_{l-r}^{(p)})$, where $B_l^{(p)}$ is the class of all sequences $\{\varphi_n\}_{n=1}^{\infty}$ $(0<\varphi_n\downarrow 0$ as $n\uparrow \infty$) satisfying the Bari $(B_l^{(p)})$-condition: $n^{-l}\big(\sum_{\nu=1}^n \nu^{pl-1}\varphi_{\nu}^p\big)^{1/p}=\mathcal O(\varphi_n)$, $n\in\mathbb N$, which is equivalent to the Stechkin $(S_l)$-condition, then
$$ E_{n-1}(f^{(r)})_p\asymp \bigg(\sum_{\nu=n+1}^{\infty}\nu^{pr-1}\omega_l^p\Big(f;\frac{\pi}{\nu}\Big)_p\bigg)^{1/p}\asymp \omega_k\Big(f^{(r)};\frac{\pi}{n}\Big)_p,\quad n\in \mathbb N. $$
Keywords: best approximation, modulus of smoothness, direct and inverse theorems with derivatives of the theory of approximation of periodic functions, trigonometric Fourier series with monotone coefficients, order equalities.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2022-284
This research was supported by the Ministry of Science and Higher Education of the Russian Federation within a program of the Moscow Center for Fundamental and Applied Mathematics (agreement no. 075-15-2022-284).
Received: 08.09.2022
Revised: 17.10.2022
Accepted: 24.10.2022
Bibliographic databases:
Document Type: Article
UDC: 517.518.454, 517.518.832
Language: Russian
Citation: N. A. Ilyasov, “Order equalities in the spaces $L_p(\mathbb T), 1$ < $p$ < $\infty$, for best approximations and moduli of smoothness of derivatives of periodic functions with monotone Fourier coefficients”, Trudy Inst. Mat. i Mekh. UrO RAN, 28, no. 4, 2022, 103–120
Citation in format AMSBIB
\Bibitem{Ily22}
\by N.~A.~Ilyasov
\paper Order equalities in the spaces $L_p(\mathbb T), 1$ < $p$ < $\infty$, for best approximations and moduli of smoothness of derivatives of periodic functions with monotone Fourier coefficients
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2022
\vol 28
\issue 4
\pages 103--120
\mathnet{http://mi.mathnet.ru/timm1954}
\crossref{https://doi.org/10.21538/0134-4889-2022-28-4-103-120}
\elib{https://elibrary.ru/item.asp?id=49866451}
Linking options:
  • https://www.mathnet.ru/eng/timm1954
  • https://www.mathnet.ru/eng/timm/v28/i4/p103
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:141
    Full-text PDF :50
    References:27
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024