Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2022, Volume 28, Number 4, Pages 54–63
DOI: https://doi.org/10.21538/0134-4889-2022-28-4-54-63
(Mi timm1949)
 

This article is cited in 1 scientific paper (total in 1 paper)

An algorithm for taking a bipartite graph to the bipartite threshold form

V. A. Baranskii, T. A. Senchonok

Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
Full-text PDF (200 kB) Citations (1)
References:
Abstract: A triple of different vertices $(x,v,y)$ of a graph $G=(V,E)$ such that $xv \in E$ and $vy \notin E$ is called lifting if $\mathrm{deg}(x) \leq \mathrm{deg}(y)$ and lowering if $\mathrm{deg}(x) \geq 2 + \mathrm{deg}(y)$. A transformation $\phi$ of the graph $G$ that replaces $G$ with $\phi(G) = G - xv + vy$ is called an edge rotation in the graph $G$ about the vertex $v$ corresponding to the triple of vertices $(x, v, y)$. For a lifting (lowering) triple $(x, v, y)$, the corresponding edge rotation is called lifting (lowering). An edge rotation in a graph $G$ is lifting if and only if its inverse is lowering in the graph $\phi(G)$. A bipartite graph $H = (V_1, E, V_2)$ is called a bipartite threshold graph if it has no lifting triples such that $x, y \in V_1$ and $v \in V_2$ or $x,y \in V_2$ and $v \in V_1$. The edge rotation corresponding to a triple of vertices $(x, v, y)$ such that $x,y \in V_1$ and $v \in V_2$ ($x,y \in V_2$ and $v \in V_1$) is called a $V_1$-rotation ($V_2$-rotation) of edges. Every bipartite graph $H = (V_1, E, V_2)$ can be transformed to a bipartite threshold graph by a finite sequence of $V_1$-rotations ($V_2$-rotations) of edges. The aim of the paper is to give a polynomial algorithm that transforms every bipartite graph $H=(V_1,E,V_2)$ to a bipartite threshold graph by a shortest finite sequence of $V_1$-rotations of edges.
Keywords: algorithm, integer partition, threshold graph, bipartite graph, bipartite threshold graph, Ferrers diagram.
Received: 15.08.2022
Revised: 15.09.2022
Accepted: 26.09.2022
Bibliographic databases:
Document Type: Article
UDC: 519.176
MSC: 05A17
Language: Russian
Citation: V. A. Baranskii, T. A. Senchonok, “An algorithm for taking a bipartite graph to the bipartite threshold form”, Trudy Inst. Mat. i Mekh. UrO RAN, 28, no. 4, 2022, 54–63
Citation in format AMSBIB
\Bibitem{BarSen22}
\by V.~A.~Baranskii, T.~A.~Senchonok
\paper An algorithm for taking a bipartite graph to the bipartite threshold form
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2022
\vol 28
\issue 4
\pages 54--63
\mathnet{http://mi.mathnet.ru/timm1949}
\crossref{https://doi.org/10.21538/0134-4889-2022-28-4-54-63}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4531174}
\elib{https://elibrary.ru/item.asp?id=49866446}
Linking options:
  • https://www.mathnet.ru/eng/timm1949
  • https://www.mathnet.ru/eng/timm/v28/i4/p54
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:83
    Full-text PDF :31
    References:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024