Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2022, Volume 28, Number 2, Pages 106–113
DOI: https://doi.org/10.21538/0134-4889-2022-28-2-106-113
(Mi timm1908)
 

This article is cited in 1 scientific paper (total in 1 paper)

$\bar\omega$-Satellites of $\bar\omega$-fibered formations of finite groups

A. A. Gorepekina, M. M. Sorokina

I. G. Petrovsky Bryansk State University
Full-text PDF (191 kB) Citations (1)
References:
Abstract: Only finite groups are considered. The notion of $\omega$-local formation of groups, where $\omega$ is a nonempty set of primes, is a well-known generalization of the notion of local formation. For an arbitrary partition $\sigma$ of the set of all primes, A. N. Skiba developed the $\sigma$-theory of finite groups and applied its methods for constructing $\sigma$-local formations. The concept of $\omega$-fiberedness introduced by V. A. Vedernikov for classes of groups made it possible to construct an infinite series of $\omega$-fibered formations, while $\omega$-local formations formed one of the types of this series. In this paper, we study $\bar\omega$‑fibered formations of groups, where $\bar\omega$ is an arbitrary partition of the set $\omega$, constructed on the basis of Skiba's $\sigma$-approach applied to $\omega$-fibered formations. Consider functions $f\colon{\bar{\omega}} \cup \{\bar{\omega}'\}\rightarrow \{$formations of groups$\}$ and $\gamma\colon\bar{\omega} \rightarrow \{$nonempty Fitting formations of groups$\}$, where $f(\bar{\omega}')\not=\varnothing$ and the class of groups $\gamma(\omega_{i})$ contains all ${\omega_{i}}'$-groups for any $\omega_{i} \in \bar{\omega}$. A formation $\frak F = (G \in \frak G \vert G/O_{\omega}(G) \in f(\bar{\omega}')$ and $G/G_{\gamma (\omega_{i})} \in f (\omega_{i})$ for any $\omega_{i} \in \bar{\omega} \cap \pi (G))$ is called an $\bar{\omega}$-fibered formation with direction $\gamma$ and $\bar{\omega}$-satellite $f$. In this paper we study inner $\bar\omega$-satellites of $\bar\omega$-fibered formations, i.e., $\bar\omega$-satellites whose values are contained in the considered formation. The following problems are solved: the existence of a canonical $\bar\omega$-satellite of an $\bar\omega$-fibered formation is proved, and the structure of a maximal inner $\bar\omega$-satellite of an $\bar\omega$-fibered formation is described.
Keywords: finite group, class of groups, formation, $\bar\omega$-fibered formation, direction of an $\bar\omega$-fibered formation, $\bar\omega$-satellite of an $\bar\omega$-fibered formation.
Received: 27.03.2022
Revised: 21.04.2022
Accepted: 25.04.2022
Bibliographic databases:
Document Type: Article
UDC: 512.542
MSC: 20D10, 20F17
Language: Russian
Citation: A. A. Gorepekina, M. M. Sorokina, “$\bar\omega$-Satellites of $\bar\omega$-fibered formations of finite groups”, Trudy Inst. Mat. i Mekh. UrO RAN, 28, no. 2, 2022, 106–113
Citation in format AMSBIB
\Bibitem{GorSor22}
\by A.~A.~Gorepekina, M.~M.~Sorokina
\paper $\bar\omega$-Satellites of $\bar\omega$-fibered formations of finite groups
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2022
\vol 28
\issue 2
\pages 106--113
\mathnet{http://mi.mathnet.ru/timm1908}
\crossref{https://doi.org/10.21538/0134-4889-2022-28-2-106-113}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4453861}
\elib{https://elibrary.ru/item.asp?id=48585952}
Linking options:
  • https://www.mathnet.ru/eng/timm1908
  • https://www.mathnet.ru/eng/timm/v28/i2/p106
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024