Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2022, Volume 28, Number 2, Pages 56–65
DOI: https://doi.org/10.21538/0134-4889-2022-28-2-56-65
(Mi timm1903)
 

Hilbert's basis theorem for a semiring of skew polynomials

M. V. Babenkoa, V. V. Chermnykhb

a Vyatka State University
b Syktyvkar State University
References:
Abstract: Semirings of skew polynomials are studied. Such semirings are generalizations of both polynomial semirings and skew polynomial rings. Let $\varphi$ be an endomorphism of a semiring $S$. The left semiring of skew polynomials over $S$ is the set of polynomials of the form $f=a_0+a_1x+\ldots +a_kx^k$, $a_i\in S$, with the usual addition and the multiplication given by the rule $xa=\varphi (a)x$. It is known that the semiring of polynomials over a Noetherian semiring does not have to be Noetherian. In 1976, L. Dale introduced the notion of monic ideal of a polynomial semiring $S[x]$ over a commutative semiring, i.e., of an ideal that together with any its polynomial $f=\ldots+ax^k+\ldots$ contains each monomial $ax^k$. It was shown that the Noetherian property of a semiring $S$ implies the ascending chain condition for the monic ideals from $S[x]$. We study the monic ideals of the semiring of skew polynomials $S[x,\varphi]$. To describe them, we define $\varphi$-chains of coefficient sets of ideals from the semiring $S[x,\varphi]$. The main result of the paper is the following fact: if $\varphi$ is an automorphism, then the semiring $S$ is left (right) Noetherian if and only if $S[x,\varphi]$ satisfies the ascending chain condition for the left (right) monic ideals. Examples are given showing that the injectivity of the endomorphism $\varphi$ is not sufficient for the validity of the formulated result.
Keywords: semiring of skew polynomials, monic ideal, $\varphi$-chain of coefficient sets, Hilbert's basis theorem.
Received: 20.03.2022
Revised: 30.03.2022
Accepted: 04.04.2022
Bibliographic databases:
Document Type: Article
UDC: 512.55
MSC: 16Y60
Language: Russian
Citation: M. V. Babenko, V. V. Chermnykh, “Hilbert's basis theorem for a semiring of skew polynomials”, Trudy Inst. Mat. i Mekh. UrO RAN, 28, no. 2, 2022, 56–65
Citation in format AMSBIB
\Bibitem{BabChe22}
\by M.~V.~Babenko, V.~V.~Chermnykh
\paper Hilbert's basis theorem for a semiring of skew polynomials
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2022
\vol 28
\issue 2
\pages 56--65
\mathnet{http://mi.mathnet.ru/timm1903}
\crossref{https://doi.org/10.21538/0134-4889-2022-28-2-56-65}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4453856}
\elib{https://elibrary.ru/item.asp?id=48585947}
Linking options:
  • https://www.mathnet.ru/eng/timm1903
  • https://www.mathnet.ru/eng/timm/v28/i2/p56
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024