Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2022, Volume 28, Number 2, Pages 7–23
DOI: https://doi.org/10.21538/0134-4889-2022-28-2-7-23
(Mi timm1900)
 

Approximation of the Normal to the Discontinuity Lines of a Noisy Function

A. L. Ageev, T. V. Antonova

N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
References:
Abstract: The work is devoted to the construction of regularizing algorithms for solving the ill-posed problem of determining the normal and the position of the discontinuity lines of a function of two variables. It is assumed that the function is smooth outside the discontinuity lines and has a discontinuity of the first kind at each point on the line. The case is considered when the exact function is unknown, and, instead of it, at each node of a uniform grid with step $\tau$, the mean values of the perturbed function on a square with side $\tau$ are known. The perturbed function approximates the exact function in the space $L_2(\mathbb{R}^2)$, and the perturbation level $\delta$ is assumed to be known. Previously, the authors investigated (obtained accuracy estimates for) global discrete regularizing algorithms for approximating the set of discontinuity lines of a noisy function. The idea of averaging the original disturbed data over both variables is used to suppress noise when constructing the algorithms. In this work, methods are constructed that allow finding a set of pairs (grid point and vector): the grid point approximates the discontinuity line of the exact function, and the corresponding vector approximates the normal to the discontinuity line. These algorithms are investigated for the special case where the discontinuity lines are polygonal. Estimates of the accuracy of approximation of discontinuity lines and normals are obtained.
Keywords: ill-posed problem, regularization method, discontinuity lines, global localization, separability threshold, normal.
Received: 16.12.2021
Revised: 20.01.2022
Accepted: 24.01.2022
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2022, Volume 319, Issue 1, Pages S12–S29
DOI: https://doi.org/10.1134/S0081543822060037
Bibliographic databases:
Document Type: Article
UDC: 517.988.68
MSC: 65J22, 68U10
Language: Russian
Citation: A. L. Ageev, T. V. Antonova, “Approximation of the Normal to the Discontinuity Lines of a Noisy Function”, Trudy Inst. Mat. i Mekh. UrO RAN, 28, no. 2, 2022, 7–23; Proc. Steklov Inst. Math. (Suppl.), 319, suppl. 1 (2022), S12–S29
Citation in format AMSBIB
\Bibitem{AgeAnt22}
\by A.~L.~Ageev, T.~V.~Antonova
\paper Approximation of the Normal to the Discontinuity Lines of a Noisy Function
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2022
\vol 28
\issue 2
\pages 7--23
\mathnet{http://mi.mathnet.ru/timm1900}
\crossref{https://doi.org/10.21538/0134-4889-2022-28-2-7-23}
\elib{https://elibrary.ru/item.asp?id=48585942}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2022
\vol 319
\issue , suppl. 1
\pages S12--S29
\crossref{https://doi.org/10.1134/S0081543822060037}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000905209900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85148376086}
Linking options:
  • https://www.mathnet.ru/eng/timm1900
  • https://www.mathnet.ru/eng/timm/v28/i2/p7
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:102
    Full-text PDF :20
    References:22
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024