Loading [MathJax]/jax/output/CommonHTML/jax.js
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2022, Volume 28, Number 1, Pages 232–238
DOI: https://doi.org/10.21538/0134-4889-2022-28-1-232-238
(Mi timm1894)
 

On the F-Norm of a Finite Group

V. N. Rizhika, I. N. Safonovab, A. N. Skibac

a Bryansk State Agrarian University
b Belarusian State University, Minsk
c Francisk Skaryna Gomel State University, Faculty of Mathematics
References:
Abstract: Let G be a finite group, and let F be a nonempty formation. Then the intersection of the normalizers of the F-residuals of all subgroups of G is called the F-norm of G and is denoted by NF(G). A group G is called F-critical if GF, but UF for any proper subgroup U of G. We say that a finite group G is generalized F-critical if G contains a normal subgroup N such that NΦ(G) and the quotient group G/N is F-critical. In this publication, we prove the following result: If G does not belong to the nonempty hereditary formation F, then the F-norm NF(G) of G coincides with the intersection of the normalizers of the F-residuals of all generalized F-critical subgroups of G. In particular, the norm N(G) of G coincides with the intersection of the normalizers of all cyclic subgroups of G of prime power order.
Keywords: finite group, hereditary formation, F-residual of a group, F-norm of a group, generalized F-critical group.
Funding agency Grant number
Ministry of Education of the Republic of Belarus 20211328
Belarusian Republican Foundation for Fundamental Research Ф20Р-291
The second author was supported by the Ministry of Education of the Republic of Belarus (project no. 20211328), and the third author was supported by the Belarusian Republican Foundation for Fundamental Research (grant no. F20R-291).
Received: 10.11.2021
Revised: 15.12.2021
Accepted: 27.12.2021
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2022, Volume 317, Issue 1, Pages S136–S141
DOI: https://doi.org/10.1134/S0081543822030129
Bibliographic databases:
Document Type: Article
UDC: 512.542
MSC: 20D10, 20D15
Language: Russian
Citation: V. N. Rizhik, I. N. Safonova, A. N. Skiba, “On the F-Norm of a Finite Group”, Trudy Inst. Mat. i Mekh. UrO RAN, 28, no. 1, 2022, 232–238; Proc. Steklov Inst. Math. (Suppl.), 317, suppl. 1 (2022), S136–S141
Citation in format AMSBIB
\Bibitem{RizSafSki22}
\by V.~N.~Rizhik, I.~N.~Safonova, A.~N.~Skiba
\paper On the $\mathfrak{F}$-Norm of a Finite Group
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2022
\vol 28
\issue 1
\pages 232--238
\mathnet{http://mi.mathnet.ru/timm1894}
\crossref{https://doi.org/10.21538/0134-4889-2022-28-1-232-238}
\elib{https://elibrary.ru/item.asp?id=48072640}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2022
\vol 317
\issue , suppl. 1
\pages S136--S141
\crossref{https://doi.org/10.1134/S0081543822030129}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000905206300016}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85143797020}
Linking options:
  • https://www.mathnet.ru/eng/timm1894
  • https://www.mathnet.ru/eng/timm/v28/i1/p232
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:142
    Full-text PDF :35
    References:31
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025