Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2022, Volume 28, Number 1, Pages 182–198
DOI: https://doi.org/10.21538/0134-4889-2022-28-1-182-198
(Mi timm1890)
 

This article is cited in 1 scientific paper (total in 1 paper)

On the exponents of commutators from P. Hall's collection formula

V. M. Leontiev

Institute of Mathematics and Computer Science, Siberian Federal University, Krasnoyarsk
Full-text PDF (266 kB) Citations (1)
References:
Abstract: Let $G$ be a group, and let $x,y \in G$. We find an explicit form of the exponents of some commutators from P. Hall's collection formula for the expression $(xy)^n$, $n \in \mathbb{N}$. The exponents for the series of commutators $[y,\!\!\ _ux,\!\!\ _vy]$ and $[[y,\!\!\ _ux],[y,\!\!\ _vx]]$ are found in the Hall form, i.e., in the form of integer-valued polynomials in $n$ with zero constant term, and also modulo $n$ when $n$ is a prime number. The exponents for the series of commutators $[[y,\!\!\ _{u}x,\!\!\ _{v}y],\!\!\ _{t_{1}}[y,\!\!\ _{u_1}x,\!\!\ _{v_1}y], \ldots,\!\!\ _{t_{h}}[y,\!\!\ _{u_h}x,\!\!\ _{v_h}y]]$ are found in the form of multiple combinatorial sums. As a consequence, we obtain an explicit form of Hall's collection formula in two cases: the group $G$ has solvability length 2, the commutator subgroup $G'$ has nilpotency class 2, and $y \in C_G(G')$. A collection formula for the expression $(xy)^n$ is obtained in an explicit form when the group $G$ has solvability length 3. To obtain these results we parameterize the uncollected part of the collection formula by the binary weight function. The results may be useful in solving problems in combinatorial group theory and in studying the regularity of finite $p$-groups.
Keywords: collection process, collection formula, commutator.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-02-2022-876
This work is supported by the Krasnoyarsk Mathematical Center and financed by the Ministry of Science and Higher Education of the Russian Federation (Agreement No. 075-02-2022-876).
Received: 16.09.2021
Revised: 22.11.2021
Accepted: 29.11.2021
Bibliographic databases:
Document Type: Article
UDC: 512.54
MSC: 20F12, 05E15
Language: Russian
Citation: V. M. Leontiev, “On the exponents of commutators from P. Hall's collection formula”, Trudy Inst. Mat. i Mekh. UrO RAN, 28, no. 1, 2022, 182–198
Citation in format AMSBIB
\Bibitem{Leo22}
\by V.~M.~Leontiev
\paper On the exponents of commutators from P. Hall's collection formula
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2022
\vol 28
\issue 1
\pages 182--198
\mathnet{http://mi.mathnet.ru/timm1890}
\crossref{https://doi.org/10.21538/0134-4889-2022-28-1-182-198}
\elib{https://elibrary.ru/item.asp?id=48072636}
Linking options:
  • https://www.mathnet.ru/eng/timm1890
  • https://www.mathnet.ru/eng/timm/v28/i1/p182
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:93
    Full-text PDF :19
    References:23
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024