Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2022, Volume 28, Number 1, Pages 156–163
DOI: https://doi.org/10.21538/0134-4889-2022-28-1-156-163
(Mi timm1888)
 

This article is cited in 1 scientific paper (total in 1 paper)

On the product of operator exponentials

L. F. Korkina, M. A. Rekant

Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
Full-text PDF (183 kB) Citations (1)
References:
Abstract: A linear densely defined operator $A$ and a domain lying in its regular set and containing the nonpositive real semiaxis are given in a Banach space. A power bound for the norm of the resolvent of the operator at infinity is assumed to be known. The operators $e^{tA}$ $(t\in \mathbb{R})$, given by the corresponding series, and $(e^{tA})_{I}$ for $t<0$, introduced on the basis of the integral Cauchy formula, are considered. The question of invertibility of the operator exponentials and the multiplicative property of these exponentials are studied. The operator exponentials can be used for the construction of operator functions of a wider class than that considered by the authors earlier.
Keywords: operator exponent, operator functions, multiplicative property.
Received: 22.10.2021
Revised: 30.11.2021
Accepted: 06.12.2021
Bibliographic databases:
Document Type: Article
UDC: 517.983.23
MSC: 47A05
Language: Russian
Citation: L. F. Korkina, M. A. Rekant, “On the product of operator exponentials”, Trudy Inst. Mat. i Mekh. UrO RAN, 28, no. 1, 2022, 156–163
Citation in format AMSBIB
\Bibitem{KorRek22}
\by L.~F.~Korkina, M.~A.~Rekant
\paper On the product of operator exponentials
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2022
\vol 28
\issue 1
\pages 156--163
\mathnet{http://mi.mathnet.ru/timm1888}
\crossref{https://doi.org/10.21538/0134-4889-2022-28-1-156-163}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4412493}
\elib{https://elibrary.ru/item.asp?id=48072634}
Linking options:
  • https://www.mathnet.ru/eng/timm1888
  • https://www.mathnet.ru/eng/timm/v28/i1/p156
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:149
    Full-text PDF :31
    References:35
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024