Loading [MathJax]/jax/output/SVG/config.js
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2022, Volume 28, Number 1, Pages 58–73
DOI: https://doi.org/10.21538/0134-4889-2022-28-1-58-73
(Mi timm1882)
 

This article is cited in 5 scientific papers (total in 5 papers)

Asymptotics of a solution to a time-optimal control problem with an unbounded target set in the critical case

A. R. Danilina, O. O. Kovrizhnykhab

a N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
Full-text PDF (266 kB) Citations (5)
References:
Abstract: We study a time-optimal control problem for a singularly perturbed linear autonomous system with smooth geometric constraints on the control in the form of a ball and an unbounded target set:
$$ \left\{ \!\!\!\!\!
\begin{array}{llll} &\dot{x}=y,\,&\ x,\,y\in \mathbb {R}^{2m},\quad u\in \mathbb {R}^{2m},\\[1ex] & \varepsilon^2\dot{y}=Jy+u,&\,\|u\|\leqslant 1,\quad 0<\varepsilon\ll 1,\\[1ex] & x(0)=x^0\neq 0,\quad y(0)=y^0,\\[1ex] & x(T_\varepsilon)=0,\quad T_\varepsilon \longrightarrow \min,& \end{array}
\right. $$
where $ J=\displaystyle\left(
\begin{array}{rr} 0&I_m \\ 0&0\end{array}
\right). $ The main difference of this case from the systems with fast and slow variables studied earlier is that here the matrix at the fast variables is a multidimensional analog of the second-order Jordan cell with zero eigenvalue, and thus does not satisfy the standard condition of asymptotic stability. The solvability of the problem is proved. The main system of equations for finding a solution is written. In the case $m=1$, we derive and justify a complete asymptotics in the sense of Poincaré with respect to the asymptotic sequence $\varepsilon^q\ln^p\varepsilon$, $q\in\mathbb {N}$, $q-1\ge p\in\mathbb {N}\cup\{0\}$, of the optimal time and of the vector generating the optimal control.
Keywords: optimal control, time-optimal control problem, unbounded target set, singularly perturbed problem, asymptotic expansion, small parameter.
Received: 11.08.2021
Revised: 22.11.2021
Accepted: 29.11.2021
Bibliographic databases:
Document Type: Article
UDC: 517.977
MSC: 93C70, 49N05
Language: Russian
Citation: A. R. Danilin, O. O. Kovrizhnykh, “Asymptotics of a solution to a time-optimal control problem with an unbounded target set in the critical case”, Trudy Inst. Mat. i Mekh. UrO RAN, 28, no. 1, 2022, 58–73
Citation in format AMSBIB
\Bibitem{DanKov22}
\by A.~R.~Danilin, O.~O.~Kovrizhnykh
\paper Asymptotics of a solution to a time-optimal control problem with an unbounded target set in the critical case
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2022
\vol 28
\issue 1
\pages 58--73
\mathnet{http://mi.mathnet.ru/timm1882}
\crossref{https://doi.org/10.21538/0134-4889-2022-28-1-58-73}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4412487}
\elib{https://elibrary.ru/item.asp?id=48072628}
Linking options:
  • https://www.mathnet.ru/eng/timm1882
  • https://www.mathnet.ru/eng/timm/v28/i1/p58
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:212
    Full-text PDF :53
    References:46
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025