|
Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2005, Volume 11, Number 2, Pages 10–29
(Mi timm186)
|
|
|
|
This article is cited in 4 scientific papers (total in 4 papers)
Growth rate of sequences of multiple rectangular Fourier sums
N. Yu. Antonov
Abstract:
In the case when a sequence of $d$-dimensional vectors $\mathbf n_k=(n_k^1,n_k^2,\dots,n_k^d)$ with nonnegative integral coordinates satisfies the condition
$$
n_k^j=\alpha_jm_k+O(1),\quad k\in\mathbb N,\quad1\le j\le d,
$$
where $\alpha_1\dots,\alpha_d$ are nonnegative real numbers and $\{m_k\}_{k=1}^\infty$ is a sequence of positive integers, the following estimate of the rate of growth of sequences $S_{\mathbf n_k}(f,\mathbf x)$ of rectangular partial sums of multiple trigonometric Fourier series is obtained: if $f\in L(\ln^+L)^{d-1}([-\pi,\pi)^d)$, then
$$
S_{\mathbf n_k}(f,\mathbf x)=o(\ln k)\quad\text{a.e.}
$$
Analogous estimates are valid for conjugate series as well.
Received: 16.01.2005
Citation:
N. Yu. Antonov, “Growth rate of sequences of multiple rectangular Fourier sums”, Function theory, Trudy Inst. Mat. i Mekh. UrO RAN, 11, no. 2, 2005, 10–29; Proc. Steklov Inst. Math. (Suppl.), 2005no. , suppl. 2, S9–S29
Linking options:
https://www.mathnet.ru/eng/timm186 https://www.mathnet.ru/eng/timm/v11/i2/p10
|
|