Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2005, Volume 11, Number 2, Pages 10–29 (Mi timm186)  

This article is cited in 4 scientific papers (total in 4 papers)

Growth rate of sequences of multiple rectangular Fourier sums

N. Yu. Antonov
Full-text PDF (359 kB) Citations (4)
References:
Abstract: In the case when a sequence of $d$-dimensional vectors $\mathbf n_k=(n_k^1,n_k^2,\dots,n_k^d)$ with nonnegative integral coordinates satisfies the condition
$$ n_k^j=\alpha_jm_k+O(1),\quad k\in\mathbb N,\quad1\le j\le d, $$
where $\alpha_1\dots,\alpha_d$ are nonnegative real numbers and $\{m_k\}_{k=1}^\infty$ is a sequence of positive integers, the following estimate of the rate of growth of sequences $S_{\mathbf n_k}(f,\mathbf x)$ of rectangular partial sums of multiple trigonometric Fourier series is obtained: if $f\in L(\ln^+L)^{d-1}([-\pi,\pi)^d)$, then
$$ S_{\mathbf n_k}(f,\mathbf x)=o(\ln k)\quad\text{a.e.} $$
Analogous estimates are valid for conjugate series as well.
Received: 16.01.2005
Bibliographic databases:
Document Type: Article
UDC: 517.518
Language: Russian
Citation: N. Yu. Antonov, “Growth rate of sequences of multiple rectangular Fourier sums”, Function theory, Trudy Inst. Mat. i Mekh. UrO RAN, 11, no. 2, 2005, 10–29; Proc. Steklov Inst. Math. (Suppl.), 2005no. , suppl. 2, S9–S29
Citation in format AMSBIB
\Bibitem{Ant05}
\by N.~Yu.~Antonov
\paper Growth rate of sequences of multiple rectangular Fourier sums
\inbook Function theory
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2005
\vol 11
\issue 2
\pages 10--29
\mathnet{http://mi.mathnet.ru/timm186}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2200219}
\zmath{https://zbmath.org/?q=an:1143.42010}
\elib{https://elibrary.ru/item.asp?id=12040700}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2005
\issue , suppl. 2
\pages S9--S29
Linking options:
  • https://www.mathnet.ru/eng/timm186
  • https://www.mathnet.ru/eng/timm/v11/i2/p10
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024