Abstract:
Pfaff equations with continuous coefficients are considered. A specific Cauchy problem for a Pfaff equation is transformed to an equivalent system of integral equations of a special type, which is overdetermined. It is shown that in the case of smooth coefficients the consistency of the system is equivalent to the Frobenius integrability criterion. A theorem on the existence of a solution for the obtained type of integral equations is presented. The solution is found by the Euler polygonal method, which allows one to construct an approximate solution of the Pfaff equation. An analog of Nagumo's theorem on the uniqueness of the solution to the Cauchy problem is also given.
Keywords:
Pfaff equation, integral equation, consistency of a system, Frobenius criterion, existence theorem, Euler polygonal lines, uniqueness of solution, Nagumo condition.
Citation:
A. A. Azamov, A. Begaliev, “An Existence Theorem and an Approximate Solution Method for a Pfaff Equation with Continuous Coefficients”, Trudy Inst. Mat. i Mekh. UrO RAN, 27, no. 3, 2021, 12–24; Proc. Steklov Inst. Math. (Suppl.), 317, suppl. 1 (2022), S16–S26
\Bibitem{AzaBeg21}
\by A.~A.~Azamov, A.~Begaliev
\paper An Existence Theorem and an Approximate Solution Method for a Pfaff Equation with Continuous Coefficients
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2021
\vol 27
\issue 3
\pages 12--24
\mathnet{http://mi.mathnet.ru/timm1835}
\crossref{https://doi.org/10.21538/0134-4889-2021-27-3-12-24}
\elib{https://elibrary.ru/item.asp?id=46502687}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2022
\vol 317
\issue , suppl. 1
\pages S16--S26
\crossref{https://doi.org/10.1134/S0081543822030026}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000755375800002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85141966968}
Linking options:
https://www.mathnet.ru/eng/timm1835
https://www.mathnet.ru/eng/timm/v27/i3/p12
This publication is cited in the following 2 articles:
A. A. Abduganiev, A. A. Azamov, A. O. Begaliev, “Existence and Uniqueness Theorems for the Pfaff Equation with Continuous Coefficients”, J Math Sci, 278:3 (2024), 385
A. A. Abduganiev, A. A. Azamov, A. O. Begaliev, “Teoremy suschestvovaniya i edinstvennosti dlya uravneniya Pfaffa s nepreryvnymi koeffitsientami”, Nauka — tekhnologiya — obrazovanie — matematika — meditsina, SMFN, 67, no. 4, Rossiiskii universitet druzhby narodov, M., 2021, 609–619