Abstract:
We consider the problem of the dynamic reconstruction of an observed state trajectory x∗(⋅)
of an affine deterministic dynamic system and a control that has generated this trajectory.
The reconstruction is based on current information about inaccurate discrete measurements of x∗(⋅).
A correct statement of the problem on the construction of approximations ul(⋅) to the normal control
u∗(⋅) generating x∗(⋅) is refined. The solution of this problem obtained using the variational
approach proposed by the authors is discussed. Conditions on the input data and matching conditions for the
approximation parameters (parameters of the accuracy and frequency of measurements of the trajectory and an
auxiliary regularizing parameter) are given. Under these conditions, the reconstructed trajectories xl(⋅)
of the dynamical system converge uniformly to the observed trajectory x∗(⋅) in the space C of continuous
functions as l→∞. It is proved that the proposed controls ul(⋅) converge weakly* to u∗(⋅)
in the space L1 of integrable functions.
Keywords:
dynamic reconstruction problems, convex–concave discrepancy, problems of calculus of variations, Hamiltonian systems.
Citation:
N. N. Subbotina, E. A. Krupennikov, “Weak* Approximations to the Solution of a Dynamic Reconstruction Problem”, Trudy Inst. Mat. i Mekh. UrO RAN, 27, no. 2, 2021, 208–220; Proc. Steklov Inst. Math. (Suppl.), 317, suppl. 1 (2022), S142–S152
\Bibitem{SubKru21}
\by N.~N.~Subbotina, E.~A.~Krupennikov
\paper Weak* Approximations to the Solution of a Dynamic Reconstruction Problem
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2021
\vol 27
\issue 2
\pages 208--220
\mathnet{http://mi.mathnet.ru/timm1827}
\crossref{https://doi.org/10.21538/0134-4889-2021-27-2-208-220}
\elib{https://elibrary.ru/item.asp?id=45771415}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2022
\vol 317
\issue , suppl. 1
\pages S142--S152
\crossref{https://doi.org/10.1134/S0081543822030130}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000660522100018}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85143800493}
Linking options:
https://www.mathnet.ru/eng/timm1827
https://www.mathnet.ru/eng/timm/v27/i2/p208
This publication is cited in the following 4 articles:
V. A. Srochko, V. G. Antonik, “Reshenie lineino-kvadratichnykh zadach v diskretno-nepreryvnom formate s vneshnimi vozdeistviyami”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 45 (2023), 24–36
Nina Subbotina, Evgenii Krupennikov, Springer Proceedings in Mathematics & Statistics, 423, Differential Equations, Mathematical Modeling and Computational Algorithms, 2023, 227
A. V. Arguchintsev, V. A. Srochko, “Solution of a Linear–Quadratic Problem on a Set of Piecewise Constant Controls with Parameterization of the Functional”, Proc. Steklov Inst. Math. (Suppl.), 319, suppl. 1 (2022), S43–S53
N. N. Subbotina, E. A. Krupennikov, “Weak* Solution to a Dynamic Reconstruction Problem”, Proc. Steklov Inst. Math., 315 (2021), 233–246