Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2021, Volume 27, Number 2, Pages 208–220
DOI: https://doi.org/10.21538/0134-4889-2021-27-2-208-220
(Mi timm1827)
 

This article is cited in 4 scientific papers (total in 4 papers)

Weak* Approximations to the Solution of a Dynamic Reconstruction Problem

N. N. Subbotinaab, E. A. Krupennikova

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
Full-text PDF (240 kB) Citations (4)
References:
Abstract: We consider the problem of the dynamic reconstruction of an observed state trajectory $x^*(\cdot)$ of an affine deterministic dynamic system and a control that has generated this trajectory. The reconstruction is based on current information about inaccurate discrete measurements of $x^*(\cdot)$. A correct statement of the problem on the construction of approximations $u^l(\cdot)$ to the normal control $u^*(\cdot)$ generating $x^*(\cdot)$ is refined. The solution of this problem obtained using the variational approach proposed by the authors is discussed. Conditions on the input data and matching conditions for the approximation parameters (parameters of the accuracy and frequency of measurements of the trajectory and an auxiliary regularizing parameter) are given. Under these conditions, the reconstructed trajectories $x^l(\cdot)$ of the dynamical system converge uniformly to the observed trajectory $x^*(\cdot)$ in the space $C$ of continuous functions as $l\to\infty$. It is proved that the proposed controls $u^l(\cdot)$ converge weakly* to $u^*(\cdot)$ in the space $L^1$ of integrable functions.
Keywords: dynamic reconstruction problems, convex–concave discrepancy, problems of calculus of variations, Hamiltonian systems.
Funding agency Grant number
Russian Foundation for Basic Research 20-01-00362
This work was supported by the Russian Foundation for Basic Research (project no. 20-01-00362).
Received: 26.02.2021
Revised: 07.04.2021
Accepted: 12.04.2021
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2022, Volume 317, Issue 1, Pages S142–S152
DOI: https://doi.org/10.1134/S0081543822030130
Bibliographic databases:
Document Type: Article
UDC: 517.977
MSC: 65K10, 34A55, 49K15
Language: Russian
Citation: N. N. Subbotina, E. A. Krupennikov, “Weak* Approximations to the Solution of a Dynamic Reconstruction Problem”, Trudy Inst. Mat. i Mekh. UrO RAN, 27, no. 2, 2021, 208–220; Proc. Steklov Inst. Math. (Suppl.), 317, suppl. 1 (2022), S142–S152
Citation in format AMSBIB
\Bibitem{SubKru21}
\by N.~N.~Subbotina, E.~A.~Krupennikov
\paper Weak* Approximations to the Solution of a Dynamic Reconstruction Problem
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2021
\vol 27
\issue 2
\pages 208--220
\mathnet{http://mi.mathnet.ru/timm1827}
\crossref{https://doi.org/10.21538/0134-4889-2021-27-2-208-220}
\elib{https://elibrary.ru/item.asp?id=45771415}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2022
\vol 317
\issue , suppl. 1
\pages S142--S152
\crossref{https://doi.org/10.1134/S0081543822030130}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000660522100018}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85143800493}
Linking options:
  • https://www.mathnet.ru/eng/timm1827
  • https://www.mathnet.ru/eng/timm/v27/i2/p208
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025