Loading [MathJax]/jax/output/SVG/config.js
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2021, Volume 27, Number 2, Pages 19–34
DOI: https://doi.org/10.21538/0134-4889-2021-27-2-19-34
(Mi timm1811)
 

This article is cited in 1 scientific paper (total in 1 paper)

On a Quadratic Minimization Problem with Nonuniform Perturbations in the Criteria and Constraints

L. A. Artem'eva, A. A. Dryazhenkov, M. M. Potapov

Lomonosov Moscow State University
Full-text PDF (253 kB) Citations (1)
References:
Abstract: A quadratic minimization problem is considered in Hilbert spaces in the presence of a linear operator constraint of the equality type and a quadratic constraint of the inequality type. The problem is reformulated as the problem of finding the saddle point of the normal Lagrange function. For the numerical solution of this problem, a regularized gradient-type method is proposed that iterates both in primal and in dual variables. Approximate solutions are constructed under nonclassical information conditions, when the approximations to the exact operators from the problem statement available to the computer approximate these operators only strongly pointwise and there are no corresponding error estimates in the operator norms of the original spaces. Instead, a priori information is used about the error levels that become accessible when the norms are changed in the domains or ranges of the operators. Estimates of the first type appear after strengthening norms in the domain spaces of the operators, and estimates of the second type appear after weakening norms in their range spaces. At each iteration of the proposed method, two main actions are performed. First, the next approximation to the minimum value of the functional is computed using error estimates of the first type. Then, the next approximation to the optimal solution is found using error estimates of the second type. It is proved that the approximations generated by the proposed method converge to the solution of the original optimization problem in the norm of the original space.
Keywords: quadratic minimization problem, approximate data, numerical solution, ill-posed problem, regularized gradient method, Lagrange function, saddle point.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation МК-3539.2019.1
This work was supported by the Russian President's grant no. MK-3566.2019.1.
Received: 19.02.2021
Revised: 03.03.2021
Accepted: 15.03.2021
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2021, Volume 315, Issue 1, Pages S27–S41
DOI: https://doi.org/10.1134/S0081543821060031
Bibliographic databases:
Document Type: Article
UDC: 519.853.62
MSC: 65J20, 65K05, 90C25
Language: Russian
Citation: L. A. Artem'eva, A. A. Dryazhenkov, M. M. Potapov, “On a Quadratic Minimization Problem with Nonuniform Perturbations in the Criteria and Constraints”, Trudy Inst. Mat. i Mekh. UrO RAN, 27, no. 2, 2021, 19–34; Proc. Steklov Inst. Math. (Suppl.), 315, suppl. 1 (2021), S27–S41
Citation in format AMSBIB
\Bibitem{ArtDryPot21}
\by L.~A.~Artem'eva, A.~A.~Dryazhenkov, M.~M.~Potapov
\paper On a Quadratic Minimization Problem with Nonuniform Perturbations in the Criteria and Constraints
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2021
\vol 27
\issue 2
\pages 19--34
\mathnet{http://mi.mathnet.ru/timm1811}
\crossref{https://doi.org/10.21538/0134-4889-2021-27-2-19-34}
\elib{https://elibrary.ru/item.asp?id=45771399}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2021
\vol 315
\issue , suppl. 1
\pages S27--S41
\crossref{https://doi.org/10.1134/S0081543821060031}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000660522100002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85108259793}
Linking options:
  • https://www.mathnet.ru/eng/timm1811
  • https://www.mathnet.ru/eng/timm/v27/i2/p19
  • This publication is cited in the following 1 articles:
    1. L. A. Artem'eva, A. A. Dryazhenkov, M. M. Potapov, “A stable solution of a nonuniformly perturbed quadratic minimization problem by the extragradient method with step size separated from zero”, Proc. Steklov Inst. Math. (Suppl.), 325, suppl. 1 (2024), S17–S32  mathnet  crossref  crossref  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:223
    Full-text PDF :48
    References:48
    First page:13
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025