Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2021, Volume 27, Number 1, Pages 258–267
DOI: https://doi.org/10.21538/0134-4889-2021-27-1-258-267
(Mi timm1807)
 

This article is cited in 2 scientific papers (total in 2 papers)

On the lattices of the $\omega$-fibered formations of finite groups

S. P. Maksakov

I. G. Petrovsky Bryansk State Pedagogical University
Full-text PDF (203 kB) Citations (2)
References:
Abstract: Only finite groups and classes of finite groups are considered. The lattice approach to the study of formations of groups was first applied by A.N. Skiba in 1986. L.A. Shemetkov and A.N. Skiba established main properties of lattices of local formations and $\omega$-local formations where $\omega$ is a nonempty subset of the set $\mathbb{P}$ of all primes. An $\omega$-local formation is one of types of $\omega$-fibered formations introduced by V.A. Vedernikov and M.M. Sorokina in 1999. Let $f : \omega \cup \{\omega'\} \rightarrow$ $\{$formations of groups$\}$, where $f(\omega') \neq \varnothing$, and $\delta :\mathbb{P} \rightarrow \{$nonempty Fitting formations$\}$ are the functions. Formation $ \frak F = (G \ \vert \ G/O_\omega (G) \in f(\omega')$ and $G/G_{\delta (p)} \in f(p)$ for all $p\in \omega \cap \pi(G) )$ is called an $\omega$-fibered formation with a direction $\delta$ and with an $\omega$-satellite $f$, where $O_{\omega}(G)$ is the largest normal $\omega$-subgroup of the group $G$, $G_{\delta (p)}$ is the $\delta (p)$-radical of the group $G$, i.e. the largest normal subgroup of the group $G$ belonging to the class $\delta (p)$, and $\pi(G)$ is the set of all prime divisors of the order of the group $G$. We study properties of lattices of $\omega$-fibered formations of groups. In this work we have proved the modularity of the lattice $\Theta_{\omega \delta}$ of all $\omega$-fibered formations with the direction $\delta$. Its sublattice $\Theta_{\omega \delta} (\frak F)$ for the definite $\omega$-fibered formation $\frak F$ with the direction $\delta$ is considered. We have established sufficient conditions under which the lattice $\Theta_{\omega \delta} (\frak F)$ is a distributive lattice with complements.
Keywords: finite group; class of groups; formation; $\omega$-fibered formation; lattice; modular lattice; distributive lattice; lattice with complements.
Received: 05.10.2020
Revised: 18.01.2021
Accepted: 25.01.2021
Bibliographic databases:
Document Type: Article
UDC: 512.542
MSC: 20D10, 20E17
Language: English
Citation: S. P. Maksakov, “On the lattices of the $\omega$-fibered formations of finite groups”, Trudy Inst. Mat. i Mekh. UrO RAN, 27, no. 1, 2021, 258–267
Citation in format AMSBIB
\Bibitem{Mak21}
\by S.~P.~Maksakov
\paper On the lattices of the $\omega$-fibered formations of finite groups
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2021
\vol 27
\issue 1
\pages 258--267
\mathnet{http://mi.mathnet.ru/timm1807}
\crossref{https://doi.org/10.21538/0134-4889-2021-27-1-258-267}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000630926400023}
\elib{https://elibrary.ru/item.asp?id=44827410}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85114422238}
Linking options:
  • https://www.mathnet.ru/eng/timm1807
  • https://www.mathnet.ru/eng/timm/v27/i1/p258
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:110
    Full-text PDF :42
    References:24
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024