Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2021, Volume 27, Number 1, Pages 188–206
DOI: https://doi.org/10.21538/0134-4889-2021-27-1-188-206
(Mi timm1802)
 

This article is cited in 7 scientific papers (total in 7 papers)

Asymptotic behavior of a solution for one class of nonlinear integro-differential equations in the income distribution problem

A. Kh. Khachatryana, Kh. A. Khachatryanbcd, H. S. Petrosyanad

a National Agrarian University of Armenia
b Institute of Mathematics, National Academy of Sciences of Armenia, Yerevan
c Yerevan State University
d Lomonosov Moscow State University
Full-text PDF (291 kB) Citations (7)
References:
Abstract: We study a class of nonlinear integro-differential equations of convolution type, which have direct application in econometrics. Some qualitative properties of the solution are studied: its asymptotic behavior, monotonicity, and smoothness. A specific example of an applied nature is given.
Keywords: wealth distribution, asymptotics, wavefront, solution limit, monotonicity.
Funding agency Grant number
Russian Science Foundation 19-11-00223
The research of the second and third authors was supported by the Russian Science Foundation (project no. 19-11-00223).
Received: 09.10.2020
Revised: 08.11.2020
Accepted: 11.01.2021
Bibliographic databases:
Document Type: Article
UDC: 517.968.4
MSC: 45G05
Language: Russian
Citation: A. Kh. Khachatryan, Kh. A. Khachatryan, H. S. Petrosyan, “Asymptotic behavior of a solution for one class of nonlinear integro-differential equations in the income distribution problem”, Trudy Inst. Mat. i Mekh. UrO RAN, 27, no. 1, 2021, 188–206
Citation in format AMSBIB
\Bibitem{KhaKhaPet21}
\by A.~Kh.~Khachatryan, Kh.~A.~Khachatryan, H.~S.~Petrosyan
\paper Asymptotic behavior of a solution for one class of nonlinear integro-differential equations in the income distribution problem
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2021
\vol 27
\issue 1
\pages 188--206
\mathnet{http://mi.mathnet.ru/timm1802}
\crossref{https://doi.org/10.21538/0134-4889-2021-27-1-188-206}
\elib{https://elibrary.ru/item.asp?id=44827405}
Linking options:
  • https://www.mathnet.ru/eng/timm1802
  • https://www.mathnet.ru/eng/timm/v27/i1/p188
  • This publication is cited in the following 7 articles:
    1. A. Kh. Khachatryan, Kh. A. Khachatryan, A. S. Petrosyan, “O konstruktivnoi razreshimosti odnogo klassa nelineinykh integralnykh uravnenii gammershteinovskogo tipa na vsei pryamoi”, Izv. vuzov. Matem., 2025, no. 3, 89–106  mathnet  crossref
    2. Kh. A. Khachatryan, A. S. Petrosyan, “Asimptoticheskoe povedenie resheniya dlya odnogo klassa nelineinykh integralnykh uravnenii tipa Gammershteina na vsei pryamoi”, SMFN, 68, no. 2, Rossiiskii universitet druzhby narodov, M., 2022, 376–391  mathnet  crossref  mathscinet
    3. Kh. A. Khachatryan, A. S. Petrosyan, “Voprosy suschestvovaniya i edinstvennosti resheniya odnogo klassa nelineinykh integralnykh uravnenii na vsei pryamoi”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 26:3 (2022) (to appear)  mathnet
    4. Kh. A. Khachatryan, H. S. Petrosyan, “On summable solutions of a class of nonlinear integral equations on the whole line”, Izv. Math., 86:5 (2022), 980–991  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    5. Kh. A. Khachatryan, A. S. Petrosyan, “Voprosy suschestvovaniya i edinstvennosti resheniya odnogo klassa nelineinykh integralnykh uravnenii na vsei pryamoi”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 26:3 (2022), 446–479  mathnet  crossref
    6. Kh. A. Khachatryan, H. S. Petrosyan, “On Summable Solutions to Two-Dimensional Volterra Integral Equations with Monotone Nonlinearity on a Quarter of the Plane”, J. Contemp. Mathemat. Anal., 57:5 (2022), 303  crossref
    7. Kh. A. Khachatryan, A. S. Petrosyan, “O summiruemykh resheniyakh dvumernykh integralnykh uravnenii tipa Volterra s monotonnoi nelineinostyu na chetverti ploskosti”, Proceedings of NAS RA. Mathematics, 2022, 55  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:633
    Full-text PDF :118
    References:58
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025