Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2021, Volume 27, Number 1, Pages 146–156
DOI: https://doi.org/10.21538/0134-4889-2021-27-1-146-156
(Mi timm1799)
 

On distance-regular graphs with intersection arrays $\{q^2-1,q(q-2),q+2;1,q,(q+1)(q-2)\}$

A. A. Makhnevab, D. V. Paduchikha

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
References:
Abstract: If a distance-regular graph $\Gamma$ of diameter 3 contains a maximal locally regular 1-code that is last subconstituent perfect, then $\Gamma$ has intersection array $\{a(p+1),cp,a+1;1,c,ap\}$ or $\{a(p+1),(a+1)p,c;1,c,ap\}$, where $a=a_3$, $c=c_2$, and $p=p^3_{33}$ (Jurišić, Vidali). In the first case, $\Gamma$ has eigenvalue $\theta_2=-1$ and the graph $\Gamma_3$ is pseudogeometric for $GQ(p+1,a)$. If $a=c+1$, then the graph $\bar\Gamma_2$ is pseudogeometric for $pG_2(p+1,2a)$. If in this case the pseudogeometric graph for the generalized quadrangle $GQ(p+1,a)$ has quasi-classical parameters, then $\Gamma$ has intersection array $\{q^2-1,q(q-2),q+2;1,q,(q+1)(q-2)\}$ (Makhnev, Nirova). In this paper, we find possible automorphisms of a graph with intersection array $\{q^2-1,q(q-2),q+2;1,q,(q+1)(q-2)\}$.
Keywords: distance-regular graph, generalized quadrangle, graph automorphism.
Funding agency Grant number
Russian Foundation for Basic Research 20-51-53013
This work was supported by the Russian Foundation for Basic Research - the National Natural Science Foundation of China (project no. 20-51-53013).
Received: 10.09.2020
Revised: 20.12.2020
Accepted: 11.01.2021
Bibliographic databases:
Document Type: Article
UDC: 519.17
MSC: 05C25
Language: Russian
Citation: A. A. Makhnev, D. V. Paduchikh, “On distance-regular graphs with intersection arrays $\{q^2-1,q(q-2),q+2;1,q,(q+1)(q-2)\}$”, Trudy Inst. Mat. i Mekh. UrO RAN, 27, no. 1, 2021, 146–156
Citation in format AMSBIB
\Bibitem{MakPad21}
\by A.~A.~Makhnev, D.~V.~Paduchikh
\paper On distance-regular graphs with intersection arrays $\{q^2-1,q(q-2),q+2;1,q,(q+1)(q-2)\}$
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2021
\vol 27
\issue 1
\pages 146--156
\mathnet{http://mi.mathnet.ru/timm1799}
\crossref{https://doi.org/10.21538/0134-4889-2021-27-1-146-156}
\elib{https://elibrary.ru/item.asp?id=44827402}
Linking options:
  • https://www.mathnet.ru/eng/timm1799
  • https://www.mathnet.ru/eng/timm/v27/i1/p146
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024