Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2020, Volume 26, Number 4, Pages 244–254
DOI: https://doi.org/10.21538/0134-4889-2020-26-4-244-254
(Mi timm1779)
 

Geometric approach to finding the conditional extrema

D. S. Telyakovskiia, S. A. Telyakovskiib

a National Engineering Physics Institute "MEPhI", Moscow
b Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
References:
Abstract: In this paper, we give a geometric interpretation and a geometric proof of the necessary condition for the existence of a constrained extremum. The presented approach can be applied to finding constrained extrema of nondifferentiable functions (i.e., when Lagrange's method of undetermined multipliers is not applicable in the “classical” form). The following examples are considered: the inequality of arithmetic and geometric means, Young's inequality for products, and Jensen's inequality.
Keywords: interpolation; divided difference; spline; derivative.
Received: 09.01.2020
Revised: 07.10.2020
Accepted: 26.10.2020
Bibliographic databases:
Document Type: Article
UDC: 517.51
MSC: 26B10
Language: Russian
Citation: D. S. Telyakovskii, S. A. Telyakovskii, “Geometric approach to finding the conditional extrema”, Trudy Inst. Mat. i Mekh. UrO RAN, 26, no. 4, 2020, 244–254
Citation in format AMSBIB
\Bibitem{TelTel20}
\by D.~S.~Telyakovskii, S.~A.~Telyakovskii
\paper Geometric approach to finding the conditional extrema
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2020
\vol 26
\issue 4
\pages 244--254
\mathnet{http://mi.mathnet.ru/timm1779}
\crossref{https://doi.org/10.21538/0134-4889-2020-26-4-244-254}
\elib{https://elibrary.ru/item.asp?id=44314672}
Linking options:
  • https://www.mathnet.ru/eng/timm1779
  • https://www.mathnet.ru/eng/timm/v26/i4/p244
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024