Abstract:
Stability of reconstruction of analytic functions from the values of $2m+1$ coefficients of its Fourier series is studied. The coefficients can be taken from an arbitrary symmetric set $\delta_m \subset \mathbb{Z}$ of cardinality $2m+1$. It is known that, for $\delta_m=\{ j: |j| \le m\}$, i.e., if the coefficients are consecutive, the fastest possible convergence rate in the case of stable reconstruction is an exponential function of the square root of $m$. Any method with faster convergence is highly unstable. In particular, exponential convergence implies exponential ill-conditioning. In this paper we show that if the sets $(\delta_m)$ are chosen freely, there exist reconstruction operators $(\phi_{\delta_m})$ that have exponential convergence rate and are almost stable; specifically, their condition numbers grow at most linearly: $\kappa_{\delta_m}<c\,m$. We also show that this result cannot be noticeably strengthened. More precisely, for any sets $(\delta_m)$ and any reconstruction operators $(\phi_{\delta_m})$, exponential convergence is possible only if $\kappa_{\delta_m} \ge c\,m^{1/2}$.
\Bibitem{KonSha20}
\by S.~V.~Konyagin, A.~Yu.~Shadrin
\paper On Stable Reconstruction of Analytic Functions from Fourier Samples
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2020
\vol 26
\issue 4
\pages 182--195
\mathnet{http://mi.mathnet.ru/timm1774}
\crossref{https://doi.org/10.21538/0134-4889-2020-26-4-182-195}
\elib{https://elibrary.ru/item.asp?id=44314667}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2021
\vol 315
\issue , suppl. 1
\pages S178--S191
\crossref{https://doi.org/10.1134/S0081543821060146}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000609903100012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85103637247}
Linking options:
https://www.mathnet.ru/eng/timm1774
https://www.mathnet.ru/eng/timm/v26/i4/p182
This publication is cited in the following 1 articles:
Ben Adcock, Alexei Shadrin, “Fast and Stable Approximation of Analytic Functions from Equispaced Samples via Polynomial Frames”, Constr Approx, 57:2 (2023), 257