Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2020, Volume 26, Number 4, Pages 182–195
DOI: https://doi.org/10.21538/0134-4889-2020-26-4-182-195
(Mi timm1774)
 

This article is cited in 1 scientific paper (total in 1 paper)

On Stable Reconstruction of Analytic Functions from Fourier Samples

S. V. Konyaginab, A. Yu. Shadrinc

a Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
c University of Cambridge, Department of Applied Mathematics and Theoretical Physics
Full-text PDF (235 kB) Citations (1)
References:
Abstract: Stability of reconstruction of analytic functions from the values of $2m+1$ coefficients of its Fourier series is studied. The coefficients can be taken from an arbitrary symmetric set $\delta_m \subset \mathbb{Z}$ of cardinality $2m+1$. It is known that, for $\delta_m=\{ j: |j| \le m\}$, i.e., if the coefficients are consecutive, the fastest possible convergence rate in the case of stable reconstruction is an exponential function of the square root of $m$. Any method with faster convergence is highly unstable. In particular, exponential convergence implies exponential ill-conditioning. In this paper we show that if the sets $(\delta_m)$ are chosen freely, there exist reconstruction operators $(\phi_{\delta_m})$ that have exponential convergence rate and are almost stable; specifically, their condition numbers grow at most linearly: $\kappa_{\delta_m}<c\,m$. We also show that this result cannot be noticeably strengthened. More precisely, for any sets $(\delta_m)$ and any reconstruction operators $(\phi_{\delta_m})$, exponential convergence is possible only if $\kappa_{\delta_m} \ge c\,m^{1/2}$.
Keywords: Fourier coefficients, stable reconstruction, polynomial inequalities.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 14.W03.31.0031
The work of the first author was supported by a grant of the Government of the Russian Federation (project no. 14.W03.31.0031).
Received: 29.06.2020
Revised: 10.10.2020
Accepted: 19.10.2020
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2021, Volume 315, Issue 1, Pages S178–S191
DOI: https://doi.org/10.1134/S0081543821060146
Bibliographic databases:
Document Type: Article
UDC: 519.651 + 517.518.454 + 517.518.86
Language: Russian
Citation: S. V. Konyagin, A. Yu. Shadrin, “On Stable Reconstruction of Analytic Functions from Fourier Samples”, Trudy Inst. Mat. i Mekh. UrO RAN, 26, no. 4, 2020, 182–195; Proc. Steklov Inst. Math. (Suppl.), 315, suppl. 1 (2021), S178–S191
Citation in format AMSBIB
\Bibitem{KonSha20}
\by S.~V.~Konyagin, A.~Yu.~Shadrin
\paper On Stable Reconstruction of Analytic Functions from Fourier Samples
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2020
\vol 26
\issue 4
\pages 182--195
\mathnet{http://mi.mathnet.ru/timm1774}
\crossref{https://doi.org/10.21538/0134-4889-2020-26-4-182-195}
\elib{https://elibrary.ru/item.asp?id=44314667}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2021
\vol 315
\issue , suppl. 1
\pages S178--S191
\crossref{https://doi.org/10.1134/S0081543821060146}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000609903100012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85103637247}
Linking options:
  • https://www.mathnet.ru/eng/timm1774
  • https://www.mathnet.ru/eng/timm/v26/i4/p182
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024