Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2020, Volume 26, Number 4, Pages 64–75
DOI: https://doi.org/10.21538/0134-4889-2020-26-4-64-75
(Mi timm1766)
 

On the Norms of Boman–Shapiro Difference Operators

A. G. Babenkoab, Yu. V. Kryakinc

a Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
b Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
c Institute of Mathematics, Wrocław University
References:
Abstract: For given $k\in\mathbb{N}$ and $h>0$, an exact inequality $\|W_{2k}(f,h)\|_{C}\le C_{k}\,\|f\|_{C}$ is considered on the space $C=C(\mathbb{R})$ of continuous functions bounded on the real axis $\mathbb{R}=(-\infty,\infty)$ for the Boman–Shapiro difference operator $W_{2k}(f,h)(x):=\displaystyle\frac{(-1)^k}{h}\displaystyle\int\nolimits_{-h}^h\!{\binom {2k} k}^{\!-1}\widehat \Delta_t^{2k}f(x)\Big(1-\frac{|t|}h\Big)\, dt$, where $\widehat\Delta_t^{2k} f(x):=\sum\nolimits_{j=0}^{2k} (-1)^{j} \binom{2k}{j} f(x+jt-kt)$ is the central finite difference of a function $f$ of order $2k$ with step $t$. For each fixed $k\in\mathbb{N}$, the exact constant $C_{k}$ in the above inequality is the norm of the operator $W_{2k}(\cdot,h)$ from $C$ to $C$. It is proved that $C_{k}$ is independent of $h$ and increases in $k$. A simple method is proposed for the calculation of the constant $C_{*}=\lim_{k\to\infty}C_{k}=2.6699263\dots$ with accuracy $10^{-7}$. We also consider the problem of extending a continuous function $f$ from the interval $[-1,1]$ to the axis $\mathbb{R}$. For extensions $g_f:=g_{f,k,h}$, $k\in\mathbb{N}$, $0<h<1/(2k)$, of functions $f\in C[-1,1]$, we obtain new two-sided estimates for the exact constant $C^{*}_{k}$ in the inequality $\|W_{2k}(g_f,h)\|_{C(\mathbb R)}\le C^{*}_{k}\,\omega_{2k}(f,h)$, where $\omega_{2k}(f,h)$ is the modulus of continuity of $f$ of order $2k$. Specifically, for every positive integer $k\ge 6$ and every $h\in\big(0,1/(2k)\big)$, we prove the double inequality $5/12\le C^{*}_{k}<\big(2+e^{-2}\big)\,C_{*}$.
Keywords: difference operator, $k$th modulus of continuity, norm estimate.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00336
Ural Federal University named after the First President of Russia B. N. Yeltsin 02.A03.21.0006
This work was supported by the Russian Foundation for Basic Research (project no. 18-01-00336) and by the Russian Academic Excellence Project (agreement no. 02.A03.21.0006 of August 27, 2013, between the Ministry of Education and Science of the Russian Federation and Ural Federal University), and as part of research conducted in the Ural Mathematical Center.
Received: 13.07.2020
Revised: 15.11.2020
Accepted: 23.11.2020
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2021, Volume 315, Issue 1, Pages S55–S66
DOI: https://doi.org/10.1134/S0081543821060055
Bibliographic databases:
Document Type: Article
UDC: 517.518.82
MSC: 41A10, 41A17, 41A44
Language: Russian
Citation: A. G. Babenko, Yu. V. Kryakin, “On the Norms of Boman–Shapiro Difference Operators”, Trudy Inst. Mat. i Mekh. UrO RAN, 26, no. 4, 2020, 64–75; Proc. Steklov Inst. Math. (Suppl.), 315, suppl. 1 (2021), S55–S66
Citation in format AMSBIB
\Bibitem{BabKry20}
\by A.~G.~Babenko, Yu.~V.~Kryakin
\paper On the Norms of Boman--Shapiro Difference Operators
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2020
\vol 26
\issue 4
\pages 64--75
\mathnet{http://mi.mathnet.ru/timm1766}
\crossref{https://doi.org/10.21538/0134-4889-2020-26-4-64-75}
\elib{https://elibrary.ru/item.asp?id=44314659}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2021
\vol 315
\issue , suppl. 1
\pages S55--S66
\crossref{https://doi.org/10.1134/S0081543821060055}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000609903100004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85103627058}
Linking options:
  • https://www.mathnet.ru/eng/timm1766
  • https://www.mathnet.ru/eng/timm/v26/i4/p64
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:182
    Full-text PDF :42
    References:22
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024