Abstract:
Wielandt's criterion for the subnormality of a subgroup of a finite group is developed. For a set π={p1,p2,…,pn} and a partition σ={{p1},{p2},…,{pn},{π}′}, it is proved that a subgroup H is σ-subnormal in a finite group G if and only if it is {{pi},{pi}′}-subnormal in G for every i=1,2,…,n. In particular, H is subnormal in G if and only if it is {{p},{p}′}-subnormal in ⟨H,Hx⟩ for every prime p and any element x∈G.
Citation:
F. Sun, X. Yi, S. F. Kamornikov, “Criterion of Subnormality in a Finite Group: Reduction to Elementary Binary Partitions”, Trudy Inst. Mat. i Mekh. UrO RAN, 26, no. 3, 2020, 211–218; Proc. Steklov Inst. Math. (Suppl.), 313, suppl. 1 (2021), S194–S200
\Bibitem{SunYiKam20}
\by F.~Sun, X.~Yi, S.~F.~Kamornikov
\paper Criterion of Subnormality in a Finite Group: Reduction to Elementary Binary Partitions
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2020
\vol 26
\issue 3
\pages 211--218
\mathnet{http://mi.mathnet.ru/timm1757}
\crossref{https://doi.org/10.21538/0134-4889-2020-26-3-211-218}
\elib{https://elibrary.ru/item.asp?id=43893875}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2021
\vol 313
\issue , suppl. 1
\pages S194--S200
\crossref{https://doi.org/10.1134/S0081543821030202}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000592231900018}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85095713808}
Linking options:
https://www.mathnet.ru/eng/timm1757
https://www.mathnet.ru/eng/timm/v26/i3/p211
This publication is cited in the following 2 articles:
X. Yi, S. F. Kamornikov, V. N. Tyutyanov, “G-Covering Subgroup Systems for the Class of All σ-Nilpotent Finite Groups”, Math. Notes, 111:2 (2022), 230–235
Ballester-Bolinches A., Kamornikov S.F., Yi X., “On SIGMA-Subnormality Criteria in Finite Groups”, J. Pure Appl. Algebr., 226:2 (2022), 106822