Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2020, Volume 26, Number 3, Pages 171–186
DOI: https://doi.org/10.21538/0134-4889-2020-26-3-171-186
(Mi timm1754)
 

Automorphisms of the semiring of polynomials $\mathbb{R}_+^{\vee}[x]$ and lattices of its subalgebras

V. V. Sidorov

Vyatka State University
References:
Abstract: A commutative semiring with zero and unity different from a ring where each nonzero element is invertible is called a semifield with zero. Let $\mathbb{R}^{\vee}_+$ be the semifield with zero of nonnegative real numbers with operations of max-addition and multiplication. For any positive real numbers $a$ and $s$, denote by $\psi_{a,s}$ the automorphism of the semiring of polynomials $\mathbb{R}_+^{\vee}[x]$ defined by the rule $\psi_{a, s}\colon a_0\vee a_1x\vee\ldots\vee a_nx^n\mapsto a_0^s\vee a_1^s(ax)\vee\ldots\vee a_n^s(ax)^n$. It is proved that the automorphisms of the semiring $\mathbb{R}_+^{\vee}[x]$ are exactly the automorphisms $\psi_{a, s}$. The ring $C(X)$ of continuous $\mathbb{R}$-valued functions defined on an arbitrary topological space $X$ is an algebra over the field $\mathbb{R}$ of real numbers. A subalgebra of $C(X)$ is any nonempty subset closed under addition and multiplication of functions and under multiplication by constants from $\mathbb{R}$. Similarly, we call a nonempty subset $A\subseteq \mathbb{R}_+^{\vee}[x]$ a subalgebra of $\mathbb{R}_+^{\vee}[x]$ if $f\vee g,fg,rf\in A$ for any $f, g\in A$ and $r\in\mathbb{R}^{\vee}_+$. It is proved that an arbitrary automorphism of the lattice of subalgebras of $\mathbb{R}_+^{\vee}[x]$ is induced by some automorphism of $\mathbb{R}_+^{\vee}[x]$. The same result also holds for the lattice of subalgebras with unity of the semiring $\mathbb{R}_+^{\vee}[x]$. The technique of one-generated subalgebras is applied.
Keywords: semiring of polynomials, lattice of subalgebras, automorphism, max-addition.
Received: 02.05.2020
Revised: 20.05.2020
Accepted: 01.06.2020
Bibliographic databases:
Document Type: Article
UDC: 512.556
MSC: 06B05, 16S60, 54H99
Language: Russian
Citation: V. V. Sidorov, “Automorphisms of the semiring of polynomials $\mathbb{R}_+^{\vee}[x]$ and lattices of its subalgebras”, Trudy Inst. Mat. i Mekh. UrO RAN, 26, no. 3, 2020, 171–186
Citation in format AMSBIB
\Bibitem{Sid20}
\by V.~V.~Sidorov
\paper Automorphisms of the semiring of polynomials $\mathbb{R}_+^{\vee}[x]$ and lattices of its subalgebras
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2020
\vol 26
\issue 3
\pages 171--186
\mathnet{http://mi.mathnet.ru/timm1754}
\crossref{https://doi.org/10.21538/0134-4889-2020-26-3-171-186}
\elib{https://elibrary.ru/item.asp?id=43893872}
Linking options:
  • https://www.mathnet.ru/eng/timm1754
  • https://www.mathnet.ru/eng/timm/v26/i3/p171
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:107
    Full-text PDF :33
    References:30
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024