Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2020, Volume 26, Number 3, Pages 84–90
DOI: https://doi.org/10.21538/0134-4889-2020-26-3-84-90
(Mi timm1747)
 

Refinement of estimates for the Lyapunov exponents of a class of linear nonautonomous systems of difference equations

A. V. Lasunsky

Yaroslav-the-Wise Novgorod State University
References:
Abstract: We obtain an estimate for the norm of an $n$th-order square matrix $A^{t}$:
$$ \|A^{t}\|\leq \sum^{n-1}_{k=0}C^{k}_{t}\gamma^{t-k}(\gamma+\|A\|)^{k},\quad t\geq n-1, $$
where $C^{k}_{t}$ are the binomial coefficients, $\gamma=\max\limits_{i}|\lambda_{i}|$, and $\lambda_{i}$ are the eigenvalues of $A$. Based on this estimate and using the freezing method, we improve the constants in the upper and lower estimates for the highest and lowest exponents, respectively, of the system $ x(t+1)=A(t)x(t),\ x\in \mathbb R^{n},\ t\in \mathbb Z^{+}, $ with a completely bounded matrix $A(t)$. It is assumed that the matrices $A(t)$ and $A^{-1} (t)$ satisfy the inequalities $ \|A(t)-A(s)\|\leq\delta|t-s|^{\alpha},\ \|A^{-1}(t)-A^{-1}(s)\|\leq\delta|t-s|^{\alpha} $ with some constants $0<\alpha\leq 1$ and $\delta>0$ for any $t,s\in\mathbb Z^{+}$. We give an example showing that the constants $\gamma$ and $\delta$ are generally related.
Keywords: estimates for Lyapunov exponents, freezing method for discrete systems.
Received: 28.04.2020
Revised: 16.05.2020
Accepted: 30.06.2020
Bibliographic databases:
Document Type: Article
UDC: 517.925.51
MSC: 39A30, 39A22
Language: Russian
Citation: A. V. Lasunsky, “Refinement of estimates for the Lyapunov exponents of a class of linear nonautonomous systems of difference equations”, Trudy Inst. Mat. i Mekh. UrO RAN, 26, no. 3, 2020, 84–90
Citation in format AMSBIB
\Bibitem{Las20}
\by A.~V.~Lasunsky
\paper Refinement of estimates for the Lyapunov exponents of a class of linear nonautonomous systems of difference equations
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2020
\vol 26
\issue 3
\pages 84--90
\mathnet{http://mi.mathnet.ru/timm1747}
\crossref{https://doi.org/10.21538/0134-4889-2020-26-3-84-90}
\elib{https://elibrary.ru/item.asp?id=43893865}
Linking options:
  • https://www.mathnet.ru/eng/timm1747
  • https://www.mathnet.ru/eng/timm/v26/i3/p84
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:85
    Full-text PDF :28
    References:28
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024