Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2020, Volume 26, Number 3, Pages 69–83
DOI: https://doi.org/10.21538/0134-4889-2020-26-3-69-83
(Mi timm1746)
 

This article is cited in 2 scientific papers (total in 2 papers)

Hypercomplex Models of Multichannel Images

V. G. Labunets

Ural State Forest Engineering University
Full-text PDF (250 kB) Citations (2)
References:
Abstract: We present a new theoretical approach to the processing of multidimensional and multicomponent images based on the theory of commutative hypercomplex algebras, which generalize the algebra of complex numbers. The main goal of the paper is to show that commutative hypercomplex numbers can be used in multichannel image processing in a natural and effective manner. We suppose that animal brains operate with hypercomplex numbers when processing multichannel retinal images. In our approach, each multichannel pixel is regarded as a $K$-dimensional ($K$D) hypercomplex number rather than a $K$D vector, where $K$ is the number of different optical channels. This creates an effective mathematical basis for various function–number transformations of multichannel images and invariant pattern recognition.
Keywords: multichannel images, hypercomplex algebras, image processing.
Funding agency Grant number
Russian Foundation for Basic Research 19-29-09022\19
This work was supported by the Russian Foundation for Basic Research (project no. 19-29-09022\19.)
Received: 12.05.2020
Revised: 10.06.2020
Accepted: 06.07.2020
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2021, Volume 313, Issue 1, Pages S155–S168
DOI: https://doi.org/10.1134/S0081543821030160
Bibliographic databases:
Document Type: Article
UDC: 621.391
Language: Russian
Citation: V. G. Labunets, “Hypercomplex Models of Multichannel Images”, Trudy Inst. Mat. i Mekh. UrO RAN, 26, no. 3, 2020, 69–83; Proc. Steklov Inst. Math. (Suppl.), 313, suppl. 1 (2021), S155–S168
Citation in format AMSBIB
\Bibitem{Lab20}
\by V.~G.~Labunets
\paper Hypercomplex Models of Multichannel Images
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2020
\vol 26
\issue 3
\pages 69--83
\mathnet{http://mi.mathnet.ru/timm1746}
\crossref{https://doi.org/10.21538/0134-4889-2020-26-3-69-83}
\elib{https://elibrary.ru/item.asp?id=43893864}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2021
\vol 313
\issue , suppl. 1
\pages S155--S168
\crossref{https://doi.org/10.1134/S0081543821030160}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000592231900007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85095720823}
Linking options:
  • https://www.mathnet.ru/eng/timm1746
  • https://www.mathnet.ru/eng/timm/v26/i3/p69
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:113
    Full-text PDF :37
    References:28
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024