Processing math: 100%
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2020, Volume 26, Number 2, Pages 238–251
DOI: https://doi.org/10.21538/0134-4889-2020-26-2-238-251
(Mi timm1736)
 

This article is cited in 1 scientific paper (total in 1 paper)

On the Gibbs phenomenon for rational spline functions

A.-R. K. Ramazanovab, A.-K. K. Ramazanovc, V. G. Magomedovaa

a Daghestan State University, Makhachkala
b Daghestan Scientific Centre of Russian Academy of Sciences, Makhachkala
c Kaluga Branch of Bauman Moscow State Technical University
Full-text PDF (232 kB) Citations (1)
References:
Abstract: In the case of functions f(x) continuous on a given closed interval [a,b] except for jump discontinuity points, the Gibbs phenomenon is studied for rational spline functions RN,1(x)=RN,1(x,f,Δ,g) defined for a knot grid Δ:a=x0<x1<<xN=b and a family of poles gi[xi1,xi+1] (i=1,2,,N1) by the equalities RN,1(x)=[Ri(x)(xxi1)+Ri1(x)(xix)]/(xixi1) for x[xi1,xi] (i=1,2,,N). Here the rational functions Ri(x)=αi+βi(xxi)+γi/(xgi) (i=1,2,,N1) are uniquely defined by the conditions Ri(xj)=f(xj) (j=i1,i,i+1); we assume that R0(x)R1(x), RN(x)RN1(x). Conditions on the knot grid Δ are found under which the Gibbs phenomenon occurs or does not occur in a neighborhood of a discontinuity point.
Keywords: interpolation spline, rational spline, Gibbs phenomenon.
Received: 10.12.2019
Revised: 18.05.2020
Accepted: 25.05.2020
Bibliographic databases:
Document Type: Article
UDC: 517.5
MSC: 97N50
Language: Russian
Citation: A.-R. K. Ramazanov, A.-K. K. Ramazanov, V. G. Magomedova, “On the Gibbs phenomenon for rational spline functions”, Trudy Inst. Mat. i Mekh. UrO RAN, 26, no. 2, 2020, 238–251
Citation in format AMSBIB
\Bibitem{RamRamMag20}
\by A.-R.~K.~Ramazanov, A.-K.~K.~Ramazanov, V.~G.~Magomedova
\paper On the Gibbs phenomenon for rational spline functions
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2020
\vol 26
\issue 2
\pages 238--251
\mathnet{http://mi.mathnet.ru/timm1736}
\crossref{https://doi.org/10.21538/0134-4889-2020-26-2-238-251}
\elib{https://elibrary.ru/item.asp?id=42950662}
Linking options:
  • https://www.mathnet.ru/eng/timm1736
  • https://www.mathnet.ru/eng/timm/v26/i2/p238
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:232
    Full-text PDF :54
    References:40
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025