Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2020, Volume 26, Number 2, Pages 200–215
DOI: https://doi.org/10.21538/0134-4889-2020-26-2-200-215
(Mi timm1733)
 

On the equivalence of reproducing kernel Hilbert spaces connected by a special transform

V. V. Napalkov, V. V. Napalkov

Institute of Mathematics with Computing Centre — Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa
References:
Abstract: We consider two reproducing kernel Hilbert spaces $H_1$ and $H_2$ consisting of complex-valued functions defined on some sets of points $\Omega_1\subset {\mathbb C}^n$ and $\Omega_2\subset {\mathbb C}^m$, respectively. The norms in the spaces $H_1$ and $H_2$ have an integral form:
\begin{align*} \|f\|_{H_1}^2=\int_{\Omega_1}|f(t)|^2\,d\mu_1(t), \ \ f\in H_1,\quad \|q\|_{H_2}^2=\int_{\Omega_2}|q(z)|^2\,d\mu_2(z), \ \ q\in H_2. \end{align*}
Let $\{E (\cdot, z)\}_{z\in \Omega_2}$ be some complete system of functions in the space $H_1$. Define
\begin{align*} \widetilde f(z)\stackrel{def}{=}(E(\cdot, z), f)_{H_1} \ \ \forall z\in \Omega_2,\quad \widetilde H_1=\{\widetilde f,\, f\in H_1\}, (\widetilde f_1,\widetilde f_2)_{\widetilde H_1}\stackrel{def}{=}(f_2,f_1)_{H_1}, \quad \|\widetilde f_1\|_{\widetilde H_1}=\|f_1\|_{H_1} \ \ \forall\,\widetilde f_1,\,\widetilde f_2\in \widetilde H_1. \end{align*}
We prove that the Hilbert spaces $\widetilde H_1$ and $H_2$ are equivalent (i.e., consist of the same functions and have equivalent norms) if and only if there exists a linear continuous one-to-one operator ${\mathcal A}$ acting from the space $\overline H_1$ onto the space $H_2$ that for any $\xi\in \Omega_1$ takes the function $K_{\overline H_1}(\cdot,\xi)$ to the function $E(\xi,\cdot)$, where $\overline H_1$ is the space consisting of functions that are complex conjugate to functions from $H_1$ and $K_{\overline H_1}(t,\xi)$, $t,\xi\in \Omega_1$, is the reproducing kernel of $\overline H_1$. We also obtain other conditions for the equivalence of the spaces $\widetilde H_1$ and $H_2$. In addition, we study the question of the equivalence of the spaces $\check H_2$ and $H_1$ and the question of the existence of special orthosimilar expansion systems in the spaces $H_1$ and $H_2$. We derive a necessary and sufficient condition for the equivalence of the spaces $H_1$ and $H_2$. This paper continues the authors' paper in which the case of coinciding spaces $\widetilde H_1$ and $H_2$ was considered.
Keywords: orthosimilar decomposition systems, reproducing kernel Hilbert space, problem of describing the dual space.
Received: 05.02.2020
Revised: 13.05.2020
Accepted: 18.05.2020
Bibliographic databases:
Document Type: Article
UDC: 517.444
Language: Russian
Citation: V. V. Napalkov, V. V. Napalkov, “On the equivalence of reproducing kernel Hilbert spaces connected by a special transform”, Trudy Inst. Mat. i Mekh. UrO RAN, 26, no. 2, 2020, 200–215
Citation in format AMSBIB
\Bibitem{NapNap20}
\by V.~V.~Napalkov, V.~V.~Napalkov
\paper On the equivalence of reproducing kernel Hilbert spaces connected by a special transform
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2020
\vol 26
\issue 2
\pages 200--215
\mathnet{http://mi.mathnet.ru/timm1733}
\crossref{https://doi.org/10.21538/0134-4889-2020-26-2-200-215}
\elib{https://elibrary.ru/item.asp?id=42950659}
Linking options:
  • https://www.mathnet.ru/eng/timm1733
  • https://www.mathnet.ru/eng/timm/v26/i2/p200
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025