Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2020, Volume 26, Number 2, Pages 98–107
DOI: https://doi.org/10.21538/0134-4889-2020-26-2-98-107
(Mi timm1725)
 

On connected components of fractal cubes

D. A. Vaulina, D. A. Drozdova, A. V. Tetenovab

a Gorno-Altaisk State University
b Novosibirsk State University
References:
Abstract: The paper shows an essential difference between fractal squares and fractal cubes. The topological classification of fractal squares proposed in 2013 by K.-S. Lau et al. was based on analyzing the properties of the $\mathbb{Z}^2$-periodic extension $H=F+\mathbb{Z}^2$ of a fractal square $F$ and of its complement $H^c=\mathbb{R}^2\setminus H$. A fractal square $F\subset\mathbb{R}^2$ contains a connected component different from a line segment or a point if and only if the set $H^c$ contains a bounded connected component. We show the existence of a fractal cube $F$ in $\mathbb R^3$ for which the set $H^c=\mathbb{R}^3\setminus H$ is connected whereas the set $Q$ of connected components $K_\alpha$ of $F$ possesses the following properties: $Q$ is a totally disconnected self-similar subset of the hyperspace $C(\mathbb R^3)$, it is bi-Lipschitz isomorphic to the Cantor set $C_{1/5}$, all the sets $K_\alpha+\mathbb{Z}^3$ are connected and pairwise disjoint, and the Hausdorff dimensions $\dim_H(K_\alpha)$ of the components $K_\alpha$ assume all values from some closed interval $[a,b]$.
Keywords: fractal square, fractal cube, superfractal, self-similar set, hyperspace, Hausdorff dimension.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00420
This work was supported by the Russian Foundation for Basic Research (project no. 18-01-00420).
Received: 06.04.2020
Revised: 20.04.2020
Accepted: 11.05.2020
Bibliographic databases:
Document Type: Article
UDC: 514.8+515.2
MSC: 28A80
Language: Russian
Citation: D. A. Vaulin, D. A. Drozdov, A. V. Tetenov, “On connected components of fractal cubes”, Trudy Inst. Mat. i Mekh. UrO RAN, 26, no. 2, 2020, 98–107
Citation in format AMSBIB
\Bibitem{VauDroTet20}
\by D.~A.~Vaulin, D.~A.~Drozdov, A.~V.~Tetenov
\paper On connected components of fractal cubes
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2020
\vol 26
\issue 2
\pages 98--107
\mathnet{http://mi.mathnet.ru/timm1725}
\crossref{https://doi.org/10.21538/0134-4889-2020-26-2-98-107}
\elib{https://elibrary.ru/item.asp?id=42950651}
Linking options:
  • https://www.mathnet.ru/eng/timm1725
  • https://www.mathnet.ru/eng/timm/v26/i2/p98
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025