Abstract:
We study an overdetermined system consisting of the Navier–Stokes equations and the incompressibility equation. The system of equations describes steady spatially inhomogeneous shear flows of a viscous incompressible fluid. The nontrivial exact solution of the system under consideration is determined in the Lin–Sidorov–Aristov class. A condition for the solvability of the system for the velocity field of the form Vx=U(z)+u1(z)x+u2(z)y,Vy=V(z)+v1(z)x+v2(z)y,Vz=0Vx=U(z)+u1(z)x+u2(z)y,Vy=V(z)+v1(z)x+v2(z)y,Vz=0 is obtained. In the study of the exact solution, it is stated that the solvability of the system of equations is possible under an algebraic connection between the horizontal gradients (spatial accelerations) of the velocities u1,u2,v1,v2 and the pressure components P11,P12,P22. Pressure is a quadratic form with respect to the coordinates x and y. It is established that the pressure components and spatial accelerations are constant. In this case, depending on the values of the parameters, an exact solution is obtained for the velocities U and V. The exact solutions obtained can describe the inhomogeneous Poiseuille–Couette–Ekman flow.
Citation:
N. V. Burmasheva, E. Yu. Prosviryakov, “Exact solution of Navier-Stokes equations describing spatially inhomogeneous flows of a rotating fluid”, Trudy Inst. Mat. i Mekh. UrO RAN, 26, no. 2, 2020, 79–87
\Bibitem{BurPro20}
\by N.~V.~Burmasheva, E.~Yu.~Prosviryakov
\paper Exact solution of Navier-Stokes equations describing spatially inhomogeneous flows of a rotating fluid
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2020
\vol 26
\issue 2
\pages 79--87
\mathnet{http://mi.mathnet.ru/timm1723}
\crossref{https://doi.org/10.21538/0134-4889-2020-26-2-79-87}
\elib{https://elibrary.ru/item.asp?id=42950649}
Linking options:
https://www.mathnet.ru/eng/timm1723
https://www.mathnet.ru/eng/timm/v26/i2/p79
This publication is cited in the following 13 articles:
E. V. Kazakovtseva, A. V. Kovalenko, A. V. Pismenskii, M. Kh. Urtenov, “Gibridnyi chislenno-analiticheskii metod resheniya zadach perenosa ionov soli v membrannykh sistemakh s osevoi simmetriei”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 28:1 (2024), 130–151
Evgenii Yu. Prosviryakov, Larisa S. Goruleva, Mikhail Yu. Alies, “A class of exact solutions of the Oberbeck-Boussinesq equations with the Rayleigh dissipative function”, CPM, 26:2 (2024), 164
G. B. Sizykh, “Techenie puazeilevskogo tipa v kanale s pronitsaemymi stenkami”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 26:1 (2022), 190–201
N. V. Burmasheva, E. Yu. Prosviryakov, “Exact Solutions to the Navier – Stokes Equations
for Describing the Convective Flows
of Multilayer Fluids”, Rus. J. Nonlin. Dyn., 18:3 (2022), 397–410
N. V. Burmasheva, A. V. Dyachkova, E. Yu. Prosviryakov, “Neodnorodnoe techenie Puazeilya”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2022, no. 77, 68–85
L. S. Goruleva, E. Yu. Prosviryakov, “Nonuniform Couette–Poiseuille Shear Flow with a Moving Lower Boundary of a Horizontal Layer”, Tech. Phys. Lett., 48:7 (2022), 258
L. S. Goruleva, E. Yu. Prosviryakov, “A New Class of Exact Solutions to the Navier–Stokes Equations with Allowance for Internal Heat Release”, Opt. Spectrosc., 130:6 (2022), 365
N. V. Burmasheva, E. Yu. Prosviryakov, “Exact solutions for steady convective layered flows with a spatial acceleration”, Russian Math. (Iz. VUZ), 65:7 (2021), 8–16
N. V. Burmasheva, E. Yu. Prosviryakov, “Exact solutions to the Oberbeck–Boussinesq equations for shear flows of a viscous binary fluid with allowance made for the Soret effect”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 37 (2021), 17–30
N. V. Burmasheva, E. Yu. Prosviryakov, “Exact solutions to the Navier–Stokes equations describing stratified fluid flows”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 25:3 (2021), 491–507
N. V. Burmasheva, E. A. Larina, E. Yu. Prosviryakov, “Techenie tipa Kuetta s uchetom idealnogo skolzheniya na kontakte s tverdoi poverkhnostyu”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2021, no. 74, 79–94
E. S. Baranovskii, N. V. Burmasheva, E. Yu. Prosviryakov, “Exact solutions to the Navier-Stokes equations with couple stresses”, Symmetry-Basel, 13:8 (2021), 1355
N. V. Burmasheva, E. Yu. Prosviryakov, “Klass tochnykh reshenii dlya dvumernykh uravnenii geofizicheskoi gidrodinamiki s dvumya parametrami Koriolisa”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 32 (2020), 33–48