Loading [MathJax]/jax/output/SVG/config.js
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2005, Volume 11, Number 1, Pages 85–96 (Mi timm172)  

This article is cited in 5 scientific papers (total in 5 papers)

Characteristic equation in the problem of asymptotic stability in periodic systems with aftereffect

Yu. F. Dolgii
Full-text PDF (292 kB) Citations (5)
References:
Abstract: In linear periodic systems with aftereffect, a motion is asymptotically stable, if all eigenvalues of the monodromy operator are less than one in absolute value. Procedures of constructing the characteristic equation for the monodromy operator are connected with finite-dimensional approximations of this operator. The characteristic equation on the complex plane is given by an entire function. For nuclear operators in a separable Hilbert space, this function is uniformly approximable by polynomials in any bounded closed region of the complex plane. Conditions for the nuclearity of the monodromy operator, its conjugate operator, and the regularized monodromy operator are obtained in this work.
Received: 03.03.2004
Bibliographic databases:
Document Type: Article
UDC: 517.929
Language: Russian
Citation: Yu. F. Dolgii, “Characteristic equation in the problem of asymptotic stability in periodic systems with aftereffect”, Dynamical systems and control problems, Trudy Inst. Mat. i Mekh. UrO RAN, 11, no. 1, 2005, 85–96; Proc. Steklov Inst. Math. (Suppl.), 2005no. , suppl. 1, S82–S94
Citation in format AMSBIB
\Bibitem{Dol05}
\by Yu.~F.~Dolgii
\paper Characteristic equation in the problem of asymptotic stability in periodic systems with aftereffect
\inbook Dynamical systems and control problems
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2005
\vol 11
\issue 1
\pages 85--96
\mathnet{http://mi.mathnet.ru/timm172}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2156251}
\zmath{https://zbmath.org/?q=an:1131.34318}
\elib{https://elibrary.ru/item.asp?id=12040687}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2005
\issue , suppl. 1
\pages S82--S94
Linking options:
  • https://www.mathnet.ru/eng/timm172
  • https://www.mathnet.ru/eng/timm/v11/i1/p85
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:446
    Full-text PDF :174
    References:77
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025