Abstract:
We consider spaces of periodic functions of many variables, specifically, the Lorentz space $L_{p, \tau}(\mathbb{T}^{m})$ and the Nikol'skii–Besov space $S_{p, \tau, \theta}^{\bar{r}}B$, and study the best approximation of a function $f \in L_{p, \tau}(\mathbb{T}^{m})$ by trigonometric polynomials with the numbers of harmonics from a step hyperbolic cross. Sufficient conditions are established for a function $f \in L_{p, \tau_{1}}(\mathbb{T}^{m})$ to belong to a space $L_{q, \tau_{2}}(\mathbb{T}^{m})$ in the cases $1 <p <q <\infty$, $1 <\tau_{1}, \tau_{2} <\infty$ and $p = q$, $ 1 <\tau_{2} <\tau_{1} <\infty$. Estimates for the best approximations of functions from the Nikol'skii–Besov class $S_{p, \tau_{1}, \theta}^{\bar{r}}B$ in the norm of the space $L_{q, \tau_{2}}(\mathbb{T}^{m})$ are derived for different relations between the parameters $p$, $q$, $\tau_{1}$, $\tau_{2}$, and $\theta$. For some relations between these parameters, it is shown that the estimates are exact.
This work was supported by the Russian Academic Excellence Project (agreement no. 02.A03.21.0006 of August 27, 2013, between the Ministry of Education and Science of the Russian Federation and Ural Federal University).
Citation:
G. A. Akishev, “Estimates for the best approximations of functions from the Nikol'skii-Besov class in the Lorentz space by trigonometric polynomials”, Trudy Inst. Mat. i Mekh. UrO RAN, 26, no. 2, 2020, 5–27
\Bibitem{Aki20}
\by G.~A.~Akishev
\paper Estimates for the best approximations of functions from the Nikol'skii-Besov class in the Lorentz space by trigonometric polynomials
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2020
\vol 26
\issue 2
\pages 5--27
\mathnet{http://mi.mathnet.ru/timm1718}
\crossref{https://doi.org/10.21538/0134-4889-2020-26-2-5-27}
\elib{https://elibrary.ru/item.asp?id=42950644}
Linking options:
https://www.mathnet.ru/eng/timm1718
https://www.mathnet.ru/eng/timm/v26/i2/p5
This publication is cited in the following 4 articles:
G. Akishev, “On embedding theorems for function spaces with mixed logarithmic smoothness”, Rend. Circ. Mat. Palermo, II. Ser, 74:1 (2025)
G. Akishev, “Estimates of $M$–term approximations of functions of several variables in the Lorentz space by a constructive method”, Eurasian Math. J., 15:2 (2024), 8–32
G. A. Akishev, “Neravenstva dlya nailuchshego priblizheniya «uglom» i modulya gladkosti funktsii v prostranstve Lorentsa”, Materialy Voronezhskoi mezhdunarodnoi vesennei matematicheskoi shkoly «Sovremennye metody kraevykh zadach. Pontryaginskie chteniya—XXXIV», Voronezh, 3-9 maya 2023 g. Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 230, VINITI RAN, M., 2023, 8–24
G. A. Akishev, “Ob otsenkakh lineinykh poperechnikov klassov funktsii mnogikh peremennykh v prostranstve Lorentsa”, Tr. IMM UrO RAN, 28, no. 4, 2022, 23–39