Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2020, Volume 26, Number 2, Pages 5–27
DOI: https://doi.org/10.21538/0134-4889-2020-26-2-5-27
(Mi timm1718)
 

This article is cited in 3 scientific papers (total in 3 papers)

Estimates for the best approximations of functions from the Nikol'skii-Besov class in the Lorentz space by trigonometric polynomials

G. A. Akishevab

a Eurasian National University named after L.N. Gumilyov, Nur-Sultan
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
Full-text PDF (316 kB) Citations (3)
References:
Abstract: We consider spaces of periodic functions of many variables, specifically, the Lorentz space $L_{p, \tau}(\mathbb{T}^{m})$ and the Nikol'skii–Besov space $S_{p, \tau, \theta}^{\bar{r}}B$, and study the best approximation of a function $f \in L_{p, \tau}(\mathbb{T}^{m})$ by trigonometric polynomials with the numbers of harmonics from a step hyperbolic cross. Sufficient conditions are established for a function $f \in L_{p, \tau_{1}}(\mathbb{T}^{m})$ to belong to a space $L_{q, \tau_{2}}(\mathbb{T}^{m})$ in the cases $1 <p <q <\infty$, $1 <\tau_{1}, \tau_{2} <\infty$ and $p = q$, $ 1 <\tau_{2} <\tau_{1} <\infty$. Estimates for the best approximations of functions from the Nikol'skii–Besov class $S_{p, \tau_{1}, \theta}^{\bar{r}}B$ in the norm of the space $L_{q, \tau_{2}}(\mathbb{T}^{m})$ are derived for different relations between the parameters $p$, $q$, $\tau_{1}$, $\tau_{2}$, and $\theta$. For some relations between these parameters, it is shown that the estimates are exact.
Keywords: Lorentz space, Nikol'skii–Besov class, trigonometric polynomial, best approximation, hyperbolic cross.
Funding agency Grant number
Ural Federal University named after the First President of Russia B. N. Yeltsin 02.A03.21.0006
This work was supported by the Russian Academic Excellence Project (agreement no. 02.A03.21.0006 of August 27, 2013, between the Ministry of Education and Science of the Russian Federation and Ural Federal University).
Received: 09.09.2019
Revised: 20.05.2020
Accepted: 25.05.2020
Bibliographic databases:
Document Type: Article
UDC: 517.51
MSC: 42A05, 42A10, 46E30
Language: Russian
Citation: G. A. Akishev, “Estimates for the best approximations of functions from the Nikol'skii-Besov class in the Lorentz space by trigonometric polynomials”, Trudy Inst. Mat. i Mekh. UrO RAN, 26, no. 2, 2020, 5–27
Citation in format AMSBIB
\Bibitem{Aki20}
\by G.~A.~Akishev
\paper Estimates for the best approximations of functions from the Nikol'skii-Besov class in the Lorentz space by trigonometric polynomials
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2020
\vol 26
\issue 2
\pages 5--27
\mathnet{http://mi.mathnet.ru/timm1718}
\crossref{https://doi.org/10.21538/0134-4889-2020-26-2-5-27}
\elib{https://elibrary.ru/item.asp?id=42950644}
Linking options:
  • https://www.mathnet.ru/eng/timm1718
  • https://www.mathnet.ru/eng/timm/v26/i2/p5
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:246
    Full-text PDF :66
    References:41
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024