Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2020, Volume 26, Number 1, Pages 167–172
DOI: https://doi.org/10.21538/0134-4889-2020-26-1-167-172
(Mi timm1707)
 

On the Maximum Guaranteed Payoff in Some Problems of Conflict Control of Multistep Processes

M. S. Nikol'skii

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
References:
Abstract: We consider multistep conflict-controlled processes with two controlling parties. The duration of the process is fixed, and there are no constraints on the right end of the discrete trajectory. The first player aims to maximize the terminal functional without information about the future behavior of the second player. We study the important notion of maximum guaranteed payoff of the first player using the ideas of Bellman's dynamic programming method. Based on this method, a formula for the maximum guaranteed payoff is derived in Theorem 1 under broad assumptions on the conflict-controlled process. In Theorem 2, we obtain sufficient conditions under which the corresponding functions of Bellman type are Lipschitz. Two examples are considered.
Keywords: discrete controlled processes, conflict, dynamical programming.
Received: 04.11.2019
Revised: 05.02.2020
Accepted: 10.02.2020
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2021, Volume 313, Issue 1, Pages S169–S174
DOI: https://doi.org/10.1134/S0081543821030172
Bibliographic databases:
Document Type: Article
UDC: 517.977
MSC: 42C10, 47A58
Language: Russian
Citation: M. S. Nikol'skii, “On the Maximum Guaranteed Payoff in Some Problems of Conflict Control of Multistep Processes”, Trudy Inst. Mat. i Mekh. UrO RAN, 26, no. 1, 2020, 167–172; Proc. Steklov Inst. Math. (Suppl.), 313, suppl. 1 (2021), S169–S174
Citation in format AMSBIB
\Bibitem{Nik20}
\by M.~S.~Nikol'skii
\paper On the Maximum Guaranteed Payoff in Some Problems of Conflict Control of Multistep Processes
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2020
\vol 26
\issue 1
\pages 167--172
\mathnet{http://mi.mathnet.ru/timm1707}
\crossref{https://doi.org/10.21538/0134-4889-2020-26-1-167-172}
\elib{https://elibrary.ru/item.asp?id=42492201}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2021
\vol 313
\issue , suppl. 1
\pages S169--S174
\crossref{https://doi.org/10.1134/S0081543821030172}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000677776900017}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85090534067}
Linking options:
  • https://www.mathnet.ru/eng/timm1707
  • https://www.mathnet.ru/eng/timm/v26/i1/p167
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:191
    Full-text PDF :35
    References:40
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024