Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2020, Volume 26, Number 1, Pages 71–88
DOI: https://doi.org/10.21538/0134-4889-2020-26-1-71-88
(Mi timm1700)
 

This article is cited in 4 scientific papers (total in 4 papers)

Optimal Strategies in the Treatment of Cancers in the Lotka–Volterra Mathematical Model of Competition

N. L. Grigorenkoa, E. N. Khailova, E. V. Grigorievab, A. D. Klimenkovaa

a Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics
b Texas Woman's University, Denton
Full-text PDF (327 kB) Citations (4)
References:
Abstract: The Lotka–Volterra competition model is applied to describe the interaction between the concentrations of healthy and cancerous cells in diseases associated with blood cancer. The model is supplemented with a differential equation characterizing the change in the concentration of a chemotherapeutic drug. The equation contains a scalar bounded control that specifies the rate of drug intake. We consider the problem of minimizing the weighted difference between the concentrations of cancerous and healthy cells at the end time of the treatment period. The Pontryagin maximum principle is used to establish analytically the properties of an optimal control. We describe situations in which the optimal control is a bang–bang function and situations in which the control may contain a singular arc in addition to bang–bang arcs. The results obtained are confirmed by corresponding numerical calculations.
Keywords: Lotka–Volterra competition model, nonlinear control system, Pontryagin maximum principle, switching function, bang–bang control, singular arc.
Funding agency Grant number
Russian Foundation for Basic Research 18-51-45003 ИНД_a
The work of the first two authors was supported by the Russian Foundation for Basic Research jointly with the Department of Science and Technology of the Government of India (project no. 18-51-45003 IND_a).
Received: 16.01.2020
Revised: 28.01.2020
Accepted: 03.02.2020
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2021, Volume 313, Issue 1, Pages S100–S116
DOI: https://doi.org/10.1134/S0081543821030111
Bibliographic databases:
Document Type: Article
UDC: 517.977.1
MSC: 49K15, 93A30
Language: Russian
Citation: N. L. Grigorenko, E. N. Khailov, E. V. Grigorieva, A. D. Klimenkova, “Optimal Strategies in the Treatment of Cancers in the Lotka–Volterra Mathematical Model of Competition”, Trudy Inst. Mat. i Mekh. UrO RAN, 26, no. 1, 2020, 71–88; Proc. Steklov Inst. Math. (Suppl.), 313, suppl. 1 (2021), S100–S116
Citation in format AMSBIB
\Bibitem{GriKhaGri20}
\by N.~L.~Grigorenko, E.~N.~Khailov, E.~V.~Grigorieva, A.~D.~Klimenkova
\paper Optimal Strategies in the Treatment of Cancers in the Lotka--Volterra Mathematical Model of Competition
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2020
\vol 26
\issue 1
\pages 71--88
\mathnet{http://mi.mathnet.ru/timm1700}
\crossref{https://doi.org/10.21538/0134-4889-2020-26-1-71-88}
\elib{https://elibrary.ru/item.asp?id=42492194}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2021
\vol 313
\issue , suppl. 1
\pages S100--S116
\crossref{https://doi.org/10.1134/S0081543821030111}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000544884900005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85090527500}
Linking options:
  • https://www.mathnet.ru/eng/timm1700
  • https://www.mathnet.ru/eng/timm/v26/i1/p71
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:602
    Full-text PDF :112
    References:52
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024